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1. INTRODUCTION

Correlation functions plays an important role in the study of many-body physics as they quantify
the Quantum Information possessed by a system (or subsystem) at a given time. Growth (or decay) of
correlation functions between two spatially separated lattice points, or operators injected at those sites
embodies decoherence and helps characterizing long time dynamical behaviour of isolated quantum
many-body systems, viz. scrambling, thermalisation, localisation etc.

If the model under question is integrable, then its partition function can be solved exactly and
the correlation functions can be obtained from it as suitable derivatives. However that forms only a
subclass of models of physical interest. The partition functions corresponding to Hamilotians, usually
interacting and subjected to external forcing terms, that are usual candidates to exhibit thermalisation,
scrambling etc, usually do not have an exact solution.

However, even though the partition functions in general cases can not be solved in closed form for
these models, it has been shown that for a special class of systems (Time-periodic or Floquet Systems),
which can be essentially thought of as unitary circuits, at special dual points it is possible to construct
analytical expressions for two-point correlators [1, 2]. For one dimensional spin chains it is essentially
achieved by thinking the dynamics as a (1+1) dimensional lattice in space time. The lattice considered
is periodic both in space and time. Then we can construct the Transfer Matrices by summing over
either the space coordinates at a given time or by summing the time coordinates at a given spatial
position (we call this the dual transfer matrix of the previous one). For a class of Unitaries it has
then be shown for two level systems[2] that both the Transfer Matrices derive the same structures but
usually with different parameters for the basis elements. At some particular dual points, where the
parameters obtains suitable value, the transfer matrix and its dual becomes exactly identical. Using
this property and applying Tensor Network Arguments[3], one can construct analytical two point
correlation functions connecting any two space-time points in this lattice.

In this project we were primarily interested in generalising the two level systems results by Bertini
et. al. for a general N-level system.

2. PROBLEM STATEMENT

In the Appendix III. of [2], Bertini et. al. used a group decomposition of SU(4), that in effect
separates out the degrees of freedom associated with unitary rotations of the individual input and
output legs. This decomposition is particularly useful, while treating the general Unitary operators
acting on the product states as 2-legged gates, as the gates, by definition, are unique upto individual
SU(2) rotations of the input and output legs.

This particular K AK type decomposition of SU(4) was introduced by Khanjea & Glasser [4] and
is related to Cartan Decomposition [5] of SU(4) over SO(4).

The independent but simultaneous unitary rotations of the qubits in both the input (output) legs
live in SU(2) ® SU(2),which forms a compact subgroup of SU(4). Let k, g denotes the generators of
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su(2) ® su(2) and su(4) respectively. Let p denote the set of generators that generate the orthogonal
subspace of su(2) ® su(2) in su(4). p is defined by a direct sum decomposition of generators as,

(1) g=kdp

Explicitly, in terms of the Pauli Matrices k and p are respectively given by,

k= {iUi ® 1, iI@Ui}
p = {io; ® 0;}

where 4, j € (z,y,2) and I denotes the identity matrix of dimension 2 x 2.
P, k, satisfies the following commutation relations.

k. k] C k
[p,p] Ck
[p.k]Cp

When the lie algebra of a group can be sum decomposed into lie algebra of a subgroup and it’s or-
thogonal vector space, such that the above commutation relation holds, then the Cartan Decomposition
Theorems allows for a decomposition of the group G given by,

G =KeAK
where A is the maximal abbelian subaelgebra of g contained in p. In this case A is given by,
(2) A ={io, ®0,,i0y @0y, i0, @0, }
so any element g € G can be written as,
(3) g = (u1 ® ug) exp{i(a104 @ 0y + a20y @ 0y + az0, @ 0,) }(v1 @ v2)

where a1, ag, a3, € R and wuy, ug, v1,v2 € SU(2). This is the desired decomposition.

Upto conjugacy, all the Cartan Decompositions of Lie Algebras (and Groups) can be classified
into seven classes. This particular decomposition belongs to AI, and the formal proof is done by
decomposing SU(4) over SO(4) and using the conjugacy of the algebras so(4) and su(2) ® su(2),
(note the groups are not conjugate, in particluar SU(2) ® SU(2) forms a double cover of SO(4).)

We were looking for a similar decomposition of SU(9) over SU(3) ® SU(3). But turns out an
algebra decomposition similar to Eqn (1), where g = su(9) and k = su(3) ® su(3), do not satisfy the
commutation relations, required for Cartan Decomposition. SU(9) can not be written as (SU(3) ®
SU(3))e(SU(3) ® SU(3)), where A is the maximal abbelian subaelgebra of g contained in p.

This can seen from the fact that rank of su(9) is 8, so is the (maximum possible) dimension of A.
su(3) ® su(3) has dimensions 16, so the dimension of the K AK structure would be 40, much less than
80, the dimension of su(9). Instead, we look at the subspace of su(9), which generates elements which
are decomposable in K AK form.

3. THEORY

Definition 1 (Group Decomposition). A decomposition of a group G, is defined as G = X1 X2X3 -+ - X,
if for oll g € G, g can be written as,

g = X1T223 " " Tn

where x; € X; for all i € (1,n), and X; are smaller subgroups of G.
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Cartan Decomposition Theorems. [6]

Theorem 1. If a semisimple Lie Algebra g has has a direct sum decomposition into subalgebra k and
a vector space p satisfying,

[k, k] C k
[p,p] Ck
[p.k|Cp

then k is a symmetric subalegbra. The corresponding subgroup K is called a symmetric subgroup of
G and the coset space G/K is called the symmetric subspace.

Definition 2 (Cartan Subalgebra). A mazimal abelian subalegbra contained in P is called a Cartan
Subalegbra of g and is denoted by a. The abelian subgroup generated by a is denoted by A

Analogous theorem for groups,

Theorem 2. Let G be a connected Lie group with finite centre, generated by the Lie-algebra g. Let
K be the subgroup generated by k and P denote exponentiation of p. Then G has the following
decomposition,

G=KP

k,p and correspondingly K, P of a particular group G given by the above theorems can be con-
structed in terms of an automorphism on the alegbra g. Let ¢ be a linear automorphism on g s.t.

o(k) =k
¢(p) = —p

By definition ¢? is identity. The corresponding automorphism of the groups is obtained by expo-
nentiation.
Let & : G — G. Then,

ok)=k V keK
®(p) = ®(exp(p)) = exp(é(p)) = exp(—p)
=p ! VpeP

A ¢, ® satisfying the operations are called symmetric automorphism and always exists under the
conditions of Theorem 1.

Theorem 3. If a is a Cartan subalgebra and a’ is any abelian subalgebra contained in p then 3 k
€ K, s.t, Adp(A") C A.

Using this and given the decomposition G = K P we can decompose the group even further. From
Theorem 3 it follows that every element of P, considered as a 1-d subalgebra contained in p can be
written as Adg(a) for a fixed Cartan Subalgebra a and some fixed k € K. Applying the exponentiation
map, then we have,

P = Ad(A) = KAK

ie,p=Fk'"lak’ V p € P, and some k' € K and a € A. This then implies,

G=KP=KAK

ie, g =kak' V g € G, and some k,k’ € K and a € A. This is our desired Cartan Decomposition in
case of groups.
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Classification of Cartan Decomposition. This exhaustive classification scheme of group decom-
position (of the kind described above) is due to Elie Cartan, [5].

Up to a conjugation the algebra su(N) has three kinds of Cartan Decomposition namely AT, ATT, ATII.
The algebra so(N) has 2, BI, BDI and the algebra sp(N) has 2, namely CI, CII, where su(N), so(N),
sp(N) denotes algebras that generates special unitary, special orthogonal and symplectic groups re-
spectively. We are in particular interested in Lie-algebra decomposition of su(N).

Type AI: Cartan Decomposition of su(N) into purely real and purely imaginary subspaces,
(4) su(N) = so(N) @ so(N)*
A maximal subalgebra contained in so(NV) is spanned by the diagonal matrices, so the rank of the

decomposition is N — 1.
Type AII:

(5) su(N) = sp(N/2) @ sp(V/2)*

again the diagonal matrices forms the maximal abelian subalgebra of sp(IN/2)1, so the rank of the
decomposition is N/2 — 1
Type AIII: it is defined by two integers p,g s.t p+ ¢ = N,

(6) su(N)=ra¢t
. A 0 0o C .
where r, t are spanned respectively by, o := 0o B) =\ ot o) with A € u(p), B € u(q)

and C are arbitray p X ¢ complex matrices. The rank of this decomposition is min{p,q}.

The general Khaneja-Glasser [4, 6] decomposition is a special case of the Type AIII, and using it
recursively to decompose su(2V) into products of 2 x 2, 4 x 4 blocks.

The su(4) = k @ p with & = su(2) ® su(2) is actually a decomposition of Type AI and follows
from the fact that, so(4) and su(2) ® su(2) are isomorphic as algebras. (In terms of group SU(4) is a
double cover of SU(2) ® SU(2).)

This fact cannot be exploited for any higher dimension, as in general so(N?) and su(N) ® su(NV)
are not isomorphic as algebras. The other types for su(N) does not contribute to our construction
either as a simple rank calculation shows. In the rest of the document we motivate a generalisation of
the construction which may be insightful to achieve the same properties required for the theorems of
Bertini et. al [2] to work for higher level systems.

4. RESULTS

In specific we have proved that a KAK type group decomposition can not be achieved for SU(9)
into SU(3) ® SU(3) and exponentiation of a subspace.
su(3) is generated by the Gell-mann Matrices,

010 —iO 1 0 0 00 1
M=110 0 0], xm=(0 -1 o], u=(0 0 0
00 0 0 0 0 0 100
0 0 00 0 00 0 L (10 0
=10 0 =100 1], x=[0 0 —i — (o 1 o
i 0 010 0 i 0 V3o o

We are interested in constructing a representation of the vector space SU(9)/SU(3) ® SU(3), in
terms of maximal tori following Khaneja & Glasser. [4]. Similar to the two level case we can construct
the following sum decomposition of SU(9),

k={ixaLiI®\}
p = {i\i ®A;}
SU(9) has rank 8, so its maximal tori forms an 8 dimensional subspace. By property of Cartan
Decomposition, we have established that no such tori recides completely within p, However, we spotted
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two different (not-conjugate to each either) 6 dimensional abbelian subspaces, spanned by the basis
sets,

a3 ={iA1 @ A1,iA2 @ A2, i3 ® A3,iA3 ® Ag, 1A @ A3,i\g ® As,
1
az ={iA ® A2 +id2 @ A1, iA1 ® A2 — ida ® A1,iA3 ® A3,iA8 @ As,
iA ® A5 — 1A5 ® Mg, 006 ® Ag — iA7 @ A6}
such that,

Gi1=Ke'K
G2 = Ke*?K

are subgroups of SU(9) with the desired structure, with K = SU(3) ® SU(3).
Withing the subgroup the Tensor Network argument works and we can construct dual solutions for
three level systems that lives in this special manifolds.

5. FURTHER WORKS

Work is currently being done to excavate all such toris for SU(9), since the subspace generated by p
is not a group in this case, it is not possible to span the subspace with just sub-maximal tori with the
above property. However, following [4] we suspect that the tori along with some non-abelian transition
unitary maybe able span the whole space. After the construction is complete we wish to generalise
the conditions for SU(N?) and thus settle the necessary and sufficient conditions for having analytical
solutions at dual points for the most general case.

REFERENCES

1. Chan, A., De Luca, A. & Chalker, J. Solution of a minimal model for many-body quantum chaos.
Physical Review X 8, 041019 (2018).

2. Bertini, B., Kos, P. & Prosen, T. Exact Correlation Functions for Dual-Unitary Lattice Models
in 1 4+ 1 Dimensions. Phys. Rev. Lett. 123, 210601. https://link. aps.org/doi/10.1103/
PhysRevLett.123.210601 (21 Nov. 2019).

3. Orus, R. Tensor networks for complex quantum systems. Nature Reviews Physics 1, 538-550
(2019).

4. Khaneja, N., Brockett, R. & Glaser, S. J. Time optimal control in spin systems. Phys. Rev. A 63,
032308. https://link.aps.org/doi/10.1103/PhysRevA.63.032308 (3 Feb. 2001).

5. Cartan, E. Les groupes réels simples, finis et continus in Annales scientifiques de I’Ecole Normale
Supérieure 31 (1914), 263-355.

6. Divakaran, P. & Ramachandran, R. A decomposition theorem for SU (n) and its application to
CP-violation through quark mass diagonalisation. Pramana 14, 47-56 (1980).



