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Abstract

In 1927, soon after the discovery of Schrodinger Equation, Madelung

had recast it into a hydrodynamic structure that deals with only real

and observable quantities like probability density and current den-

sity. The hydrodynamic formulation of Quantum Mechanics, which

started off from the shore of de Broglie’s pilot wave theory, was

later expanded and founded as Quantum Fluid Dynamics (QFD) by

David Bohm. Since then, QFD has attracted attention of physicists

and chemists, particularly owing to its parallelism to classical fluid

dynamics, in the subject areas of Theoretical Chemistry, Condesed

Matter Physics and Material Sciences. It has been used in problems

as varied as simulating solutions of Gross-Pitaevskii equations in the

study of Quantum Superfluids, In the foundations of many body Den-

sity functional Theory (DFT), In theoretical formulation and study of

Quantum Nonlocality, In studying the Bogoliubov dispersions in ex-

perimental systems of Quantum Superfluid of Light and experimental

observation of Hawking Radiations in acoustic black holes.

The dynamical problem of QFD is posed as a system of coupled non-

linear first order partial differential equations (PDE)s. One of them

is the continuity equation, the other being a Quantum Mechanical

analogue of the Hamilton Jacobi (H-J) equation. The key ingredient

of QFD is the Quantum Potential (QP), which serves as the quantum

correction to the classical framework, and as is argued, being the only

quantity depending explicitly on Plancks constant, it brings in all the

quantum effects to the dynamical system,

The computation of QP, for a general system, however, have posed

serious challenges in QFD. David Bohm had suggested that the best

way to obtain the QP is to solve the time dependent Schrodinger

Equation followed by the Madelung transformation. However this

poses a question of practicality as the wave-function itself can pro-

vide one with the same data. Several numerical ways out, such as

Quantum Trajectory Method (QTM) have been proposed to circum-

vent this problem. The solutions obtained so, however are often

unstable.

In this work, we present an answer to the question: whether there

exists an analytical method of obtaining the Quantum Potential with-

out solving the Schrodinger Equation. For this purpose, we resort to

Feynman Path Integrals (PI). Empowered with its integral equations,
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we logically derive an analytic form of the Quantum Potential, as a

functional of the classical path and using it obtain the Quantum Tra-

jectories. The work formally bridges the Path Integral approach with

Quantum Fluid Dynamics. As a model application to illustrate the

method, we work out a toy model viz. the double-well potential,

where the boundary value problem for the classical path has been

computed perturbatively. We, then, delve into seeking insight in one

of the long standing debates with regard to Quantum Tunneling.
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Chapter 1

Introduction

In Classical theories of Dynamics, the dynamical state of a system at a particular
instance is determined completely by specifying the co-ordinates, xi and the momenta,
pi of each of its constituent particles (point-mass). The whole programme of dynamics
then reduces to study the time evolution of this system, the governing laws being the
equations of motion. Given a potential V (x), these can be obtained, for example by
Newton’s law. There, however, exists several other formulations of classical dynamics,
each with their own programme of obtaining the equations of motions, and all can
be shown to be equivalent in the sharing domain of their applicability. Each of
these formulations has their own advantages and disadvantages when it comes to
computation of various quantities.

The Lagrangian formulation of Classical Mechanics allows one to obtain the equa-
tions motion by optimising a scalar quantity, which is often a simpler method than the
component-wise force balance, as is prescribed by Newton. [1] We define the scalar
quantity Lagrangian L = T − V , where T is the kinetic energy of the system and V
is the potential. The action integral, or the Hamilton’s principle function is then de-
fined as, S =

∫ tf
ti
L(x, ẋ, t′)dt′. The equations of motion, namely the Euler-Lagrange

is then obtained by optimising the integral, δS = 0 using variational calculus. The
resulting equations are,

∂L
∂x
− d

dt

(∂L
∂ẋ

)
= 0 (1.1)

These equation is equivalent to Newton’s Laws for the same system [2, 3].

The Hamiltonian is constructed from the Lagrangian using a Legendre Transfor-
mation,

H(x,p) = p.ẋ− L(x, ẋ) (1.2)

1 The equations of motions for Hamiltonian formulation are first order and 2-n
many.

1the boldface letters denote a vector.

1
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ẋi =
∂H

∂pi
; ṗi = −∂H

∂xi
(1.3)

Based on this governing equations, the theory of Classical Mechanics forms one
of the most developed mathematical formulations among physical theories. It offers
robust and well-founded tools to physicists to study a wide range of diverse phenom-
ena. The theory of Quantum Dynamics, hence, in general has been formulated in
parallelism to it, such that once the basic equations and quantities of the two formu-
lations are identified, all the machinery of classical mechanics can be put into use in
the exact same way. This construction of this map between quantities and dynam-
ical equations of two theories, or, defining the quantum analogues of observables in
classical mechanics is called the process of Quantization.

The orthodox interpretations of non-relativistic quantum theory is fulcrumed upon
representation of dynamical states of a system with wave functions |ψ〉. These wave
functions are elements of a Hilbert space with a complex field. One of the two equiva-
lent ways of computing these wave functions is given by the Heisenberg matrices. The
Hiesenberg formulation of quantum mechanics had been developed in close analogy
with the Hamiltonian formulation of Classical Mechanics, with an one-to-one relation
between the operators and the observables, and between Commutators and Poisson
Brackets respectively, which yields equations of motion of exactly the same form in
both the formulations.

(p, q)→ (P̂ , Q̂)

∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q
= {A,B} → [Â, B̂] = ÂB̂ − B̂Â

and

dA(t)

dt
= {H(t), A(t)} → d ˆA(t)

dt
=
i

~
[ ˆH(t), ˆA(t)] (1.4)

where the last set are the equations of motion of the respective formulations. This
is termed as Canonical Quantization.

The other theory is a based on differential equation. The vectors that are allowed
to represent physical states of a system are given by square integrable solutions of
the equation of Schrodinger [4]

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 (1.5)

It can be shown that eq (1.4) and (1.5) are related by a change of basis in the Hilbert
Space (an Unitary Transformation, to be specific), and hence are similar. Without
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loss of generality, through out the discourse we refer to the second formulation as the
usual formulation of Quantum Theory.

The orthodox theory stands on a set of axioms (postulates). It turns out that the
internal consistency of the formulation demands us to define the wave function to be
the most complete description of the system, even though it provides us only with
the statistical moments of various observables. The measurements in this formulation
also requires us to divide the world into quantum system and classical observers.[5]
To be consistent with experimental results the orthodox theory takes resort to the
axiom of irreversible wave function collapse. Measurement in Quantum Theory is
usually modelled as an interaction between a classical (like a needle) and quantum
(like a atom) system using a single photon. The quantum system under this inter-
action can in general be any of the multiple possible eigen-states of the operator
corresponding to classical apparatus. Quantum theory allows the quantum system
to be in a superposition of the aforementioned eigenstates. In that case, under the
measurement, the wave funtion will at random to any of the eigen states, and the
device records the corresponding eigenvalue. This process is assumed to be inherently
unpredictable, uncontrollable and unanalyzable.[6] The experimental measurements
in quantum theory is supposed to be sampled over many many instances of identical
set-up. The orthodox interpretation then successfully predicts the average and other
moments of the distribution.

Due to the famous inequality due to John Bell[5, 7], the property of non-locality
is incircumventedly attributed to any valid formulation of quantum theory. This
inherent non-local nature allows one to analyze the quantum phenomena in parallelism
to the theory of complex systems. A complex system usually has a large numbers of
coupled degrees of freedom. This often makes the overall dynamics to decipher by
keeping track of all the dynamical details of degrees of freedoms. The rules governing
the complex systems, hence, depend upon the level at which it is studied. The models
at different level can be very distinct and often it is impossible to reduce the rules at
a higher level, in terms of combination of lower ones, a property named as emergence.
A classic example for same is Biological systems. It is understood that the basic
governing laws for dynamics of individual atoms is given by the theory of Quantum
Mechanics. In principle one could write down a wave-function of a human body and
deduce in principle every aspect of its dynamics from the same. However such a task
is ridiculously impractical. There however exists sound understanding of the chemical
reactions in our physiology, how they combine with each other to dictate the overall
mechanism e.t.c. which in most cases are not drawn from a theoretical quantum
foundation. Similarly chances are, that the mathematics of the orthodox formulation
with its statistical nature studies the system at a level underlying to which an entirely
deterministic theory is hiding.

Various enquirers have been driven forward in various routes in search of such an
underlying structure to the wave function dynamics. The Madelung transformation
[8, 9] had opened a possibility of looking at the quantum systems as probability fluids,
a philosophy later theorized and interpreted by works of David Bohm.[10, 11].2. It is

2Later more general derivation has been carried out by Takabyashi[12]
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this hydrodynamic interpretation of Quantum Mechanics, that we deal with during
this work.

The Bohmian formulation is essentially looking at the solution of Schrodinger equa-
tion decoupled in two polar components. The primary advantage it provides is that
the quantities being dealt with here are reals, (namely the probability density ρ(x, t)
and action, S(x, t)), both of which has straightforward classical analogues. Histori-
cally, hence, it has been used significantly to usher lights on problems of Quantum-
Classical transitions e.t.c. [13]. Owing to its classical-like formulation it has also
found wide application studying dynamics of systems, especially in the context of
chemical systems.[14–16]. Especially in this context various numerical methods have
been developed to solve for time evolution of the two aforementioned quantities [17].

On the other hand, people have also looked for the foundation of the wave-function
formalism starting from Classical principles. This quest in particular started from the
question of what is the role of Lagrangian in Quantum Mechanics [18]. Developing
on these ideas of Dirac, Feynman formulated the Path Integrals formalism, which can
be shown to be an integral equation formulation for non-relativistic quantum theory.
In this work, we primarily attempt to bridge the gap between the Path Integral
formulation with Bohmian equations.

The rest of the report is organised as follows. In the remaining of this chapter
we briefly introduce both the theories and layout the known results that we need.
Chapter 2 deals with our formulation of Quantum Fluid Dynamics from the Path
Integrals. In Chapter 3 we study the anaharmonic oscillator as model to illustrate
our methodology. Chapter 4 deals with an incomplete attempt for a relativistic
generalisation of our work.

1.1 Quantum Fluid Dynamics

Consider the Schrodinger equation for a body with mass m, traversing under the
action of a potential V (x) (in 1 dimension).

i~
∂

∂t
|ψ(t)〉 =

(−i~∇)2

2m
|ψ(t)〉+ V (x) |ψ(t)〉 (1.6)

where, without loss of generality we substitute,

|ψ(x, t)〉 = R(x, t)eiS(x,t)/~ (1.7)

Here both R(x,t), the amplitude and S(x,t), the phase function are real and always,
R(x, t) ≥ 0. The probability density associated with Ψ(x, t) is defined as

ρ(x, t) = R(x, t)2 (1.8)
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and the local mean flow velocity[19] as

v(x, t) = ∇S(x, t)

m
(1.9)

Acting on this, the resultant equation can be decoupled into the real and imaginary
components,

−~∂R(x, t)

∂t
=

2~
2m
∇R(x, t)∇S(x, t) +

~
2m

R(x, t)∇2S(x, t)

−R(x, t)
∂S(x, t)

∂t
=

1

2m
R(x, t)(∇S(x, t))2 + V (x)R(x, t)− ~2

2m
∇2R(x, t)

which can be reduced to

∂ρ

∂t
+∇(ρv) = 0 (1.10)

−∂S
∂t

=
1

2
mv2 + V (x, t) +Q(x, t) (1.11)

using ρ(x, t) = R(x, t)2 and the definition of velocity. Here Q(x, t) denotes the
quantum potential and is given by,

Q(x, t) = − ~2

2m

∇2R(x, t)

R(x, t)
(1.12)

Equation (1.10), is a continuity equation which states that the probability is con-
served. (1.11), on the other hand gives a dynamical equation of the Hamilton-Jacobi
form, with the quantum correction term Q(x, t). Interpreted in this way, Quantum
Dynamics can be thought of as a dynamics of probability fluids.

The only explicit dependence on ~ comes in this set of equation via the Quantum
Potential. At the classical limit, ~→ 0, this term vanishes and we retrieve governing
equation for a Hamiltonian fluid. Q(x, t) hence is thought of as the origin of all
Quantum effects. It is inherently non-local in nature, bringing in the consistency
required by Bell.

The measurement problem is addressed in this formulation by introducing an extra
variable, the particle position, that exists, according to this theory irrespective of it
is measured or not. In par with the concepts classical physics, measurements of all
other variables are reduced to measurement of positions. 3

3How measurement is to be treated from this angle of looking at quantum systems is discussed
in detail by Bohm in his second paper [11]
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The dynamical problem under Quantum Fluid Dynamics, is formulated as solving
for the Quantum Trajectories which satisfies a Quantum equation of motion, viz.

d2x(t)

dt2
= −∇(V +Q) (1.13)

These trajectories are interpreted as streamlines of probability fluid element. The
structure of this equation illustrates the deterministic nature of the time evolution.
However the fundamental drawback of this formulation is the difficulties that it poses
in finding the solutions of Quantum Trajectory. If the wave-function is not known,
then it is fairly hard to iterate this equations in a self-consistent manner, and it is
impossible to do so analytically.

Bohm [10] had suggested that the easiest way to obtain the Quantum Potential is to
first solve for the solution of Schrodinger Equation, ψ(x, t), then obtain the Quantum
Potential via a Madelung Transformation. But question arises about the practicality
of doing such extra calculation, when the physically relevant quantities can already
be obtained directly from ψ(x, t) itself by the Orthodox interpretation. Numerical
attempts has been made to circumvent this issue, by forming a self consistent set of
coupled dynamical equations. [17] There are several ways of combining the available
informations to form such a set. One of them is the force version,

dρ

dt
= −ρ∇.v (1.14)

m
dv

dt
= −∇(V +Q) (1.15)

dS

dt
= L(t) =

1

2
mv2 − (V +Q) (1.16)

A disadvantage of this method is the spatial derivatives of Quantum Potential is
required for the same, which brings additional sources of errors. Another version is
the Potential Energy Method, where the force is not explictly calculated,

dρ

dt
= −ρ∇.v (1.17)

dS

dt
= L(t) =

1

2
mv2 − (V +Q) (1.18)

dx

dt
= v =

∇S
m

(1.19)

In absence of the terms which involves spatial derivatives, these equations would
have been easier to solve for. This because we know the value Hydrodynamic fields
only in the positions of the fluid elements. This positions are in turn to be dictated
by the equation we solve for. So, even if one starts from a regular grid, under time
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evolution it usually becomes non-structured very fast. This error can be rectified to
some extent by using algorithms like moving-least-square methods[15], or adaptive
grids, making the iteration fairly complex.

The main question that we wish to address is whether there is an analytical way
out to this problem. That is, given the information of an initial distribution and an
applied potential, whether it is possible to write down the Quantum Potential as a
functional of them.

To that end we start with reformulating the formulation from the theory of Path
Integrals, the basic principles of which is illustrated bellow.

1.2 Path Integral Formulation

The main idea behind the formulation of Path Integrals was engraved in the search
for an Lagrangian Formulation of Quantum Mechanics.[18] In the classical case, these
equation of motions could as well be obtained by varying the action function in the
Lagrangian Formulation. However it is not feasible to do an analogous thing in
quantum mechanics, as over there the derivatives w.r.t. coordinates and momenta
can only enter in the equation of motion through the commutators.

The analogous quantity to the classical mechanical Lagrangian was thus constructed
in a different route by Dirac [20], from the study of quantum mechanical contact trans-
formations. Form the theory of functions of non-commutative observables, it can be
shown that the analogue of Lagrangian can be achieved, if the quantum mechani-

cal contact transformation is postulated to have a form exp
(
iS
~

)
. This forms the

foundations of the theory of Path Integrals in Quantum Mechanics.

Definition 1 (Observables). Observables in quantum mechanics are defined as Her-
mitian quantities (in general non-commutating) with a complete eigenbasis.

In Hiesenberg formulation the observables are represented as matrices, whereas in
Schrodinger formulation these are represented as operators acting on functions of po-
sitional (and other relevant) variables. A function of such non-comutative observables
can be defined as follows,

Definition 2 (Functions of non-commuting variables). Let A, B be two operators,
and

A |a〉 = a |a〉 , B |b〉 = b |b〉

where |a〉 , |b〉 is sampled from the respective complete basis sets. Let f(ab) be a func-
tion having (a,b) as its domain, a,b being eigenvalues of A,B respectively. A function
of a single observable is then defined treating the other eigenvalue as a parameter such
that,

f(Ab) |a〉 = f(ab) |a〉 (1.20)
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holds for every eigenvector |a〉 of A. The function of two non-commuting observable
f(AB) is then defined as,

f(AB) |b〉 = f(Ab) |b〉 (1.21)

Note, since A,B do not commute in general, the definition is dependent on order,
and in general the result will be different if they are exchanged. The same can be
extended to accommodate functions of any finite number of non-commuting operators.
In non-relativistic quantum mechanics, this ordering is given naturally by the ordering
of time and can accommodate any number of variables as long as the variables defined
at same time are not non-commuting.

Definition 3 (Probability). A probability theory can be set up, using the indicator
function, I(abc · · · ), such that it is unity when, a,b,c e.t.c are eigen values of the
operators A,B,C. For any state |ψ〉, the probability of a being an eigen-value of A, b
being an eigen-value of B e.t.c is then given by,

P (abc · · · ) = 〈ψ| I(abc · · · ) |ψ〉 (1.22)

So the average of any other function can be obtained as,

〈f(ABC · · · )〉 =
∑
a,b,c

f(abc · · · )P (abc · · · ) (1.23)

for any state. Now, using suitable basis changes, it can be shown that for any state
|ψ〉,

〈ψ| f(Q1Q2 · · ·Qn) |ψ〉

=

∫ ∫
· · ·
∫
dq′1dq

′
2 · · · dq′nf(q′1q

′
2 · · · q′n) 〈ψ| |q′1〉 〈q′1| |q′2〉 · · · 〈q′n| |ψ〉

The propagator, 〈ψ(t)| |ψ(0)〉 can be obtained from the same, if we substitute
f(q′1q

′
2 · · · q′n) = 1. Now, consider the particular form of 〈q| |Q〉,

〈q| |Q〉 = exp(
iS(qQ)

~
) (1.24)

then,

〈q| pr |Q〉 = −i~ ∂

∂qr
〈q| |Q〉 = 〈q| ∂S(qQ)

∂qr
|Q〉 (1.25)

〈q|Pr |Q〉 = −i~ ∂

∂Qr

〈q| |Q〉 = −〈q| ∂S(qQ)

∂qr
|Q〉 (1.26)
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which in the operator language translates to,

pr =
∂S(qQ)

∂qr
; Pr = −∂S(qQ)

∂Qr

(1.27)

which have the exact same form as of the classical equations of transformation,
where S denotes the action. This then paves out the way for constructing an La-
grangian formulation of Quantum Mechanics.

The propagator then becomes,

K(x, x0; t, 0) = 〈ψ(t)| |ψ(0)〉

=

∫ ∫
· · ·
∫
dq′1dq

′
2 · · · dq′n exp

(i∑i S(qi, qi−1)

~

)
Which forms the basis of the path integral formulation.

Leaping from this suggestion of Dirac, Richard Feynman postulated[21, 22] that,
starting from a given point, the dynamics of a particle to a final point in a given time
interval, according to this formulation is contributed by all the possible paths, the
particle can take. Their contribution to the dynamics is weighed by exp(iS[x(t)]/~),
where S[x(t)] is the action or Hamilton’s principle function associated with that par-
ticular path. Equipped with this, the path integral formulation is able to tell us the
probability of finding a particle at a final point after a finite time interval, starting
from a given point. The initial wave-function and the final wave-function after time
t is related by a propagator. The integral,

ψ(xb, t) =

∫ ∞
−∞

K(xb, t;xa, 0)ψ0(xa)dxa (1.28)

gives the time evolution.

The propagator can be identified as the Green’s function to Schrodinger equation.

In spite of its remarkable internal consistency and aesthetics. the path integral
formulation suffers from two folds of problems. The action of a path is not a function
of the path variables but its a functional of the path itself, which makes it difficult to
integrate over. To find a propagator we need to have in principle an weighted sum-
mation of contribution of continuum amount of possible paths. This makes general
computations for Path Integrals extremely hard.

In some cases this can be by-passed by discretizing the path variables in time,
evaluate the integrals at each of them and finally obtain the limit from discrete to
continuum, in a manner analogous to the Riemann Integrals. By this method we can
obtain the propagator for free particle and Simple Harmonic Oscillators. But in most
cases the integrals are hard to do and in some cases, impossible.



10 CHAPTER 1. INTRODUCTION

As is illustrated earlier, we start our analytical quest by first a closed form solution
for the propagator. Then we use the same to obtain the Quantum Trajectories.

1.3 Problem Statement

As was mentioned in section 1.2, Bohmian formulation suffers from a practical ques-
tion of applicability. Even as various numerical methods have been suggested [15,
17, 23] as a remedy, those usually suffer from the problems of unstructred grids and
unstable solutions. In this project we attempt to answer the question whether there
exists an analytical solution for the same.

The path integral formulation in principle calculates the time evolution of the wave
function of a system, just from the knowledge the of classical Lagrangian (which
requires us to specify the applied potential term only) and a given initial distribution.
This property is inevitable to any governing equation of quantum mechanics as the
Hamiltonian is undetermined over an applied potential and the Schrodinger’s equation
is first order in time.

The Bohmian formulation, on the other hand, starts from these solution and then
picturizes a dynamics which is very analogous to the classical philosophy, and in prin-
ciple produces all the results as that of the orthodox formulation. Here we delve into
the possibility of obtaining the Madelung’s Equations and the Quantum Trajectories
directly from the Path Integrals, bypassing the solution to Schrodinger’s equation
entirely.

As we illustrate in the next sections, it is entirely possible to give a functional form
to the Madelung Potential, in terms of the classical path and the initial wave func-
tion and thereby obtain the Quantum trajectories directly, just by specifying the two.
We first construct a general solution for the propagator, and then use it to develop
the Quantum Trajectories. For any system, for which the classical boundary value
problem can be solved exactly, we can obtain the propagator analytically. Other-
wise the complexity of the problem is formally reduced to the solution of this BVP,
numerically.



Chapter 2

Formulation

In this section we present an exact analytical series form for the propagator (two-
point correlator) for a quantum particle in a general applied potential V (x). In Path
Integral formalism, the correlator gives the amplitude at a point x, after a time of
flight t, given that it has started from an initial point y. This propagator serves as
a Green’s function to the Schrodinger equation [21], which renders Path Integrals
its formal equivalence with the usual formulations. Equipped with this, we pose the
solution to quantum trajectories, in an integral equation framework.

2.1 The Theory

Consider a particle with mass M , moving in one dimension under the action of a
conservative force generated by potential V (x). We first treat the one dimensional
system and then extend it to higher dimensions.

Let’s xcl(t) denote the classical path of the system, from the initial position xa, to
a final point xb after a time of flight t. Being solution to a second order Boundary
Value Problem, it parametrically depends on xa, xb.

A general path, x(t) of the system is any continuous function of t that satisfies the
constraint, x(0) = xa & x(t) = xb.

Any such general path can be decomposed as

x(t) = xcl(t) + y(t) (2.1)

Varying y(t) to span the space of continuous functions on [t0, t] subjected to the
boundary conditions, y(t0) = y(t) = 0 is tantamount to spanning the space of allowed
paths of Path Integral formulation, over which we need to integrate in order to obtain
the propagator.[22]

One way to compute the path integral is to first discretise the time axis into n
moments, separated by ε units.

11
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tj = jε,

t0 = 0 , tn = t

The path integral can then be recovered by finally taking the limit n→ 0, ε→∞,
such that the product remains constant, nε = t, after the n-dimensional integral is
carried out. Equation (2.1) then becomes,

x(tj) = xj = xclj + yj. (2.2)

at each of these moments. By definition y0 = yn = 0.

The propagator is defined as,

K(xb, t;xa, 0) =

∫
exp

[ i
~

∫ t

0

L(x, ẋ, t′) dt′
]
Dx (2.3)

where L(x, ẋ, t′) is the classical Lagrangian of the system. Eq (2.3) can be rewritten,
in the discretised version as,

lim
n→∞

1

A

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp
(iε
~

n∑
j=1

[M
2ε2

(xj − xj−1)2 − V (xj)
])
dx1 · · · dxn (2.4)

Here A is the normalization constant, which is the product of the respective nor-
malization constants of the individual yj integrals. In general, it depends on n.

Throughout this report, the limit is understood to be taken as n→∞ and ε→ 0
simultaneously, with nε = t remaining constant.

The potential over the general path can be Taylor expanded the around the classical
position at each of this moments, as 1

V (xj) = V (xclj + yj) = V (xclj ) +
∞∑
m=1

ymj
m!

∂m

∂xm
V (x)|x=xclj

(2.5)

Substituting (2.2),(2.5) into (2.4) we obtain,

1The radius of convergence depends on the V(x), its higher derivatives and the convergence is
not guaranteed in general.
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lim
n→∞

1

A

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp
(iε
~

n∑
j=1

[M
2ε2

(xclj − xclj−1)2 +
M

2ε2
(xclj − xclj−1)(yj − yj−1)

+
M

2ε2
(yj − yj−1)2 − V (xclj )−

∞∑
m=1

ymj
m!

∂m

∂xm
V (x)|x=xclj

])
dy1 · · · dyn (2.6)

The terms in (2.6), those are independent of yj, can be taken out of the integrals
and they would add upto exp

[
iScl(x, t;x0, 0)/~

]
, where Scl(x, t;x0, 0) is the Classical

Action. It can be shown that, the linear terms in yj do not contribute, using a change
of variables having Jacobian determinant 1.[22] 2

For the Harmonic Oscillator, the rest of the integral is independent of xcl(t), since
the second derivative of V (x) is a constant and higher derivatives vanish. After all yj
are integrated out, it leaves out only a time dependent factor.

The primary difference as well as the complication in the generalization from the
corresponding case of Harmonic Oscillator, that forms the thesis of this work, stems
form the fact that the higher derivatives of the potential (m = 3 and higher) do not
go to zero and, in general, depends on the positional variables xclj . These, in turn,
show up in the pre-factor, and, in general, makes it dependent on position.

The rest of the general integral, that denotes the pure quantum part, is

lim
n→∞

1

A

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp
(iε
~

n∑
j=1

[M
2ε2

(yj − yj−1)2 −
y2
j

2!

∂2

∂x2
V (x)|x=xclj

−
∞∑
m=3

ymj
m!

∂m

∂xm
V (x)|x=xclj

])
dy1 · · · dyn (2.7)

The main sketch of our construction derives from the fact that this n dimensional
integral can be reduced to combination of simpler integrals which can be computed
in closed form formulae. First we systematically expand the integral, substitute for
the simpler integrals, and then wind it up back. Convergence conditions are not
discussed.

We do a series of rearrangements.

2Feynman and Hibbs , offered a different physical proof. The linear terms in yj essentially
consolidates the contribution of the first variation of the action functional over the classical path.
By the principle of Least Action, that is zero and hence its exponential is unity.
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lim
n→∞

n∏
j=1

1

Aj

∫∫ ∞
−∞
· · ·
∫ ∞
−∞

exp
iε

~

n∑
j=1

[ m
2ε2

(yj − yj−1)2 −
y2
j

2!

∂2

∂x2
V (x)|x=xclj

−
∞∑
m=3

ymj
m!

∂m

∂xm
V (x)|x=xclj

]
dy1 · · · dyn

= lim
n→∞

n∏
j=1

1

Aj

∫∫ ∞
−∞
· · ·
∫ ∞
−∞

exp
iε

~

n∑
j=1

[ m
2ε2

(yj − yj−1)2 −
y2
j

2!

∂2

∂x2
V (x)|x=xclj

]
× exp

−iε
~

n∑
j=1

[ ∞∑
m=3

ymj
m!

∂m

∂xm
V (x)|x=xclj

]
dy1 · · · dyn

= lim
n→∞

n∏
j=1

1

Aj

∫∫ ∞
−∞
· · ·
∫ ∞
−∞

exp
iε

~

n∑
j=1

[ m
2ε2

(yj − yj−1)2 −
y2
j

2!

∂2

∂x2
V (x)|x=xclj

]
×

n∑
j=1

[
1 +
−iε
~

∞∑
m=3

ymj
m!

∂m

∂xm
V (x)|x=xclj

+
1

2!

(
−iε
~

∞∑
m=3

ymj
m!

∂m

∂xm
V (x)|x=xclj

)2

+
1

3!

(
−iε
~

∞∑
m=3

ymj
m!

∂m

∂xm
V (x)|x=xclj

)3

+ · · ·
]
dy1 · · · dyn

= lim
n→∞

n∏
j=1

1

Aj

∫∫ ∞
−∞
· · ·
∫ ∞
−∞

exp
iε

~

n∑
j=1

[ m
2ε2

(yj − yj−1)2 −
y2
j

2!

∂2

∂x2
V (x)|x=xclj

]

×
n∑
j=1

[ ∞∑
k=0

1

k!

(
−iε
~

∞∑
m=3

ymj
m!

∂m

∂xm
V (x)|x=xclj

)k]
dy1 · · · dyn

Since the limit does not depend on k, we can take the k sum out. This step tells
us, that we can deal separately with the various orders of k and carry out the path
integral for them individually.

∞∑
k=0

lim
n→∞

1

A

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp
(iε
~

n∑
j′=1

[M
2ε2

(yj′ − yj′−1)2 −
y2
j′

2!

∂2

∂x2
V (x)|x=xcl

j′

])
×
[ 1

k!

(
−iε
~

n∑
j=1

∞∑
m=3

ymj
m!

∂m

∂xm
V (x)|x=xclj

)k]
dy1 · · · dyn (2.8)

Which can be re-expressed as,
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∞∑
k=0

1

k!
lim
n→∞

1

A

(−iε
~

)k ∫ ∞
−∞
· · ·
∫ ∞
−∞

exp
(iε
~

n∑
j′=1

[M
2ε2

(yj′−yj′−1)2−
y2
j′

2!

∂2

∂x2
V (x)|x=xcl

j′

])
×

∞∑
m1=3

∞∑
m2=3

· · ·
∞∑

mk=3

n∑
j1=1

n∑
j2=1

· · ·
n∑

jk=1

[ k∏
α=1

1

mα!

∂mα

∂xmα
V (x)|x=xcljα

ymαjα

]
dy1 · · · dyn (2.9)

Since the limit does not depend on m, the multi-dimensional sum over m can be
taken out.

∞∑
k=0

1

k!

(−i
~

)k ∞∑
m1=3

· · ·
∞∑

mk=3

lim
n→∞

1

A
εk

n∑
j1=1

· · ·
n∑

jk=1

∫ ∞
−∞
· · ·
∫ ∞
−∞

[ k∏
α=1

1

mα!

∂mα

∂xmα
V (x)|x=xcljα

ymαjα

]
× exp

(iε
~

n∑
j′=1

[M
2ε2

(yj′ − yj′−1)2 −
y2
j′

2!

∂2

∂x2
V (x)|x=xcl

j′

])
dy1 · · · dyn (2.10)

The same can not be done with the j sums, as they depend on n. However, at each
order of k there are exactly k of yj, which can be converted to time integrals with the
help of the k ε-s at our disposal.

But, before that we concentrate on the y integrals. They have the general form,

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp
(iε
~

n∑
j′=1

[M
2ε2

(yj′−yj′−1)2−
y2
j′

2!

∂2

∂x2
V (x)|x=xcl

j′

])[ k∏
α=1

ymαjα

]
dy1 · · · dyn

(2.11)

Computing this integral for various combinations of mαs is tantamount to solving
the complete Path Integral.

Before we delve into the actual computation, we notice the following properties of
(2.11).

Theorem 1. The integral (2.11), converges for all choices of mα and for all n. For
the choices where all mα are even, the integral can be expressed as partial derivatives
of,

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp
(iε
~

n∑
j′=1

[M
2ε2

(yj′ − yj′−1)2 −
y2
j′

2!

∂2

∂x2
V (x)|x=xcl

j′

])
dy1 · · · dyn (2.12)

For odd mα the integral vanishes.
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Theorem 2. The form of the integral is independent of the particular choice and
order of jα. It only depends on the combination of the powers mαs. Thus, it suffices
to substitute a particular combination of jα with various powers mα and compute the
integral.

That is, for example,

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp
(iε
~

n∑
j′=1

[M
2ε2

(yj′ − yj′−1)2 −
y2
j′

2!

∂2

∂x2
V (x)|x=xcl

j′

])[
ymα1

]
dy1 · · · dyn

(2.13)

represents the whole family of integrals

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp
(iε
~

n∑
j′=1

[M
2ε2

(yj′ − yj′−1)2 −
y2
j′

2!

∂2

∂x2
V (x)|x=xcl

j′

])[
ymαjα

]
dy1 · · · dyn

(2.14)

for various mα and the integrals corresponding to
[
y3

1y2

]
,
[
y2y

3
1

]
,
[
y1y

3
2

]
all have

the exact same form.

The integral in (2.12) is an multidimensional Gaussian Integral. In the next two
sections we compute these in closed form. And then we would substitute them in
(2.7) to complete the derivation.

2.2 Gaussian Integrals

The general integral we will be concentrating to evaluate is,

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp
(iε
~

n∑
j′=1

[M
2ε2

(yj′ − yj′−1)2 −
y2
j′

2!

∂2

∂x2
V (x)|x=xcl

j′

])
dy1 · · · dyn (2.15)

We will first rearrange the kinetic term using lattice derivatives. Consider the
partition of time interval, on which the integral is defined. The lattice derivatives at
an instant j is defined as,
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∇+yj =
1

ε
(yj+1 − yj) (2.16)

∇−yj =
1

ε
(yj − yj−1) (2.17)

Then,

n∑
j=0

(∇+yj)
2 = yj∇+yj|j=nj=0 −

n∑
j=0

yj∇−∇+yj

= −
n∑
j=0

yj∇−∇+yj

In terms of the lattice derivatives the integral (2.12) looks like,

( M

2πi~ε

)n+1
2

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp
−iε
~

n∑
j,j′=1

[M
2
yj[∇−∇+ + ω2

j δj,j′ ]yj′
]
dy1 · · · dyn (2.18)

where we have defined the local frequency,

ω2
j =

1

M

∂2

∂x2
V (x)|x=xclj

and the normalisation constant is chosen as,

A =

√
2πi~ε
M

n+1

(2.19)

The multivariate Gaussian integral problem is then solved using the following re-
sults,

Theorem 3. Let y = {yj} be a n× 1 vector, and let M be a n× n matrix, with real
or complex entries. Then the integral,

∫ ∞
−∞
· · ·
∫ ∞
−∞

e−yMyT

dy1 · · · dyn =

√
πn

det M

The proof is straight forward for reals, and is done by weak rotation for complex
entries in M. This reduces the integral (2.18) to,
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( M

2πi~ε

)n+1
2
(2πi~
Mε

)n
2
det[∇−∇+ + ω2

j δj,j′ ]
−1
2 (2.20)

The problem hence reduces to computation of the determinant. Now from the
definition of the lattice derivatives, the matrix has the form

M =
1

ε2



2 + ε2ω2
1 −1 0 · · · 0 0 0

−1 2 + ε2ω2
2 −1 · · · 0 0 0

0 −1 2 + ε2ω2
3 · · · 0 0 0

. . . · · · . . .

. . . · · · . . .
0 0 0 · · · 2 + ε2ω2

n−2 −1 0
0 0 0 · · · −1 2 + ε2ω2

n−1 −1
0 0 0 · · · 0 −1 2 + ε2ω2

n


(2.21)

A determinant of an invertible matrix is given by product of its eigenvalues. The
following section deals with determining the eigenvalues of the tri-diagonal matrices.

2.3 Spectral theory of tri-diagonal matrices

The general algorithm for determining the eigenvalues of a square matrix A, is done
by solving the roots of the characteristic polynomial defined by

f(x) = det[A− xI] (2.22)

where I is the identity matrix of the same dimension.

First we consider the constant diagonal or toeplitz special case, where each de-
scending diagonal from left to right has identical entries. The general form of the
tri-diagonal toeplitz matrix is,


a b 0 · · · 0 0 0
c a b · · · 0 0 0
0 c a · · · 0 0 0
. . . · · · . . .
. . . · · · . . .
0 0 0 · · · a b 0
0 0 0 · · · c a b
0 0 0 · · · 0 c a

 (2.23)

The roots of the characteristic polynomial or the eigenvalues of this matrix can be
expressed in a closed form as [24, 25],

λk = a− 2
√
bc cos

( kπ

n+ 1

)
(2.24)
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Both the free particle and simple harmonic oscillator problem falls in this category.
We first solve the propagator for them and then move on to develop the spectral
theory for non-toeplitz tri-diagonal matrices.

For the free particle problem the matrix looks like,

M =
1

ε2


2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
. . . · · · . . .
. . . · · · . . .
0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2

 (2.25)

So the determinant is given by,

n∏
k=1

λk =
n∏
k=1

2− 2 cos
( kπ

n+ 1

)
(2.26)

This free particle determinant is easier evaluated using the following recursion re-
lation,

detn[−ε2M] = 2detn−1[−ε2M]− detn−2[−ε2M] (2.27)

det1[−ε2M] = 2; det2[−ε2M] = 3; (2.28)

and evaluates to,

detn[M] = (
1

ε2
)n(n+ 1) = (

1

ε2
)n

n∏
k=1

2− 2 cos
( kπ

n+ 1

)
(2.29)

The same can obtained by taking the limit x → 1 3, in the following asymptotic
formula,

n∏
k=1

1 + x2 − 2x cos
[ πk

n+ 1

]
=
x2(n+1) − 1

x2 − 1
(2.30)

We will use this identity in the later calculations.

3using L’-Hospital rule
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For the Harmonic Oscillator, the matrix is,

M =
1

ε2



2 + ε2ω2
0 −1 0 · · · 0 0 0

−1 2 + ε2ω2
0 −1 · · · 0 0 0

0 −1 2 + ε2ω2
0 · · · 0 0 0

. . . · · · . . .

. . . · · · . . .
0 0 0 · · · 2 + ε2ω2

0 −1 0
0 0 0 · · · −1 2 + ε2ω2

0 −1
0 0 0 · · · 0 −1 2 + ε2ω2

0


(2.31)

Where, w0 denotes the natural angular frequency of the oscillation. 4 The deter-
minant is given by,

(
1

ε2
)n

n∏
k=1

2 + ε2ω2
0 − 2 cos

( kπ

n+ 1

)
= (

1

ε2
)n(n+ 1)

∏n
k=1 2 + ε2ω2

0 − 2 cos
(
kπ
n+1

)∏n
k=1 2− 2 cos

(
kπ
n+1

)
= (

1

ε2
)n(n+ 1)

n∏
k=1

2 + ε2ω2
0 − 2 cos

(
kπ
n+1

)
2− 2 cos

(
kπ
n+1

)
We are interested only in the limit where ε is small. In that regime we can always

define,

εω0 = sin (x) (2.32)

for which the formula simplifes to,

(
1

ε2
)n(n+ 1)

n∏
k=1

1− sin (x)2

sin ( πk
2(n+1)

)2

which in the asymptotic limit reduces to,

n∏
k=1

1− sin (x)2

sin ( πk
2(n+1)

)2
=

sin ((n+ 1)x)

(n+ 1) sin (x)
=

sin ((n+ 1)εω0)

(n+ 1)εω0

=
sin (ω0t)

ω0t
(2.33)

So that the coefficient for the Harmonic Oscillator path integral finally evaluates
to,

4note that it is index independent
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( M

2πi~ε

)n+1
2
(2πi~
Mε

)n
2 εn√

(n+ 1)

√
ω0t

sin (ω0t)
(2.34)

=

√
Mω0

2πi~ sin (ω0t)
(2.35)

And the complete Path Integral is,

√
Mω0

2πi~ sin (ω0t)
exp

(iScl[xcl(t)]
~

)
(2.36)

=

√
Mω0

2πi~ sin (ω0t)
exp

( iMω0

2~ sin (ω0t)
[(x2

b + x2
a) cos(ω0t) + 2xbxa]

)
(2.37)

The first point of difference in the general calculation is that the tri-diagonal matrix
(2.21) is no more toeptliz, and hence the closed form eigenvalue expression of Eqn
(2.24) is no more valid. It turns out there is actually no general closed form formula
available for the eigen-values of such aperiodic 5 and non-toeptliz tridiagnoal matrices,
for the finite dimensional cases.

We postulate an approximate closed from expression for the spectrum of the eigen-
values of (2.21),

λk =
1

ε2

[
2 + ε2ω2

k − 2 cos
( kπ

n+ 1

)]
(2.38)

This expression is approximate in any finite dimensions n, but becomes exact at
the infinite dimensional limit, as long as the local frequency ωk is bounded from both
below and above, which is the case for all physical phenomena.

The figure (2.1) compares the actual eigenvalue spectrum (in blue) which are com-
pared numerically vs the approximate eigenvalue spectrum (in orange) that are pos-
tulated by the formula (2.38) for tri-diagonal matrices of the form (2.21). We have
sampled the values of various ωk here using a random number generator between the
ranges specified.

We can see the following trends. The formula (2.38) approximates the eigen spec-
trum of the matrix of a given dimension better as the range from which the values of
ωk is sampled is broadened. For a given range, the variation (percentage error) de-
creases with the increase of dimension of the matrix. The formula for eigen spectrum
becomes asymptotically exact, with increasing matrix dimension, n.

So the determinant is given by,

5For Periodic cases there is a closed form formula [25], under some restricted conditions
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(a) n:50, R:[3,5] (b) n:50, R:[3,25] (c) n:50, R:[3,50]

(d) n:100, R:[3,5] (e) n:100, R:[3,50] (f) n:100, R:[3,200]

(g) n:200, R:[3,15] (h) n:200, R:[3,50] (i) n:200, R:[3,100]

(j) n:500, R:[3,15] (k) n:500, R:[3,100] (l) n:500, R:[3,250]

Figure 2.1: Comparison of actual (blue) and predicted (orange) spectra as postulated in formula (2.38) for various
matrix dimensions (n) and randomly sampled diagonal entry for tri-diagonal matrices of the form (2.21). The Diagonal
entries are integers sampled using a random number generator from the range specified by (R).
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(
1

ε2
)n

n∏
k=1

2 + ε2ω2
k − 2 cos

( kπ

n+ 1

)
(2.39)

Multiplying both the denominator and numerator by the free particle determinant,

(
1

ε2
)n(n+ 1)

∏n
k=1 2 + ε2ω2

k − 2 cos
(
kπ
n+1

)∏n
k=1 2− 2 cos

(
kπ
n+1

)
= (

1

ε2
)n(n+ 1)

n∏
k=1

2 + ε2ω2
k − 2 cos

(
kπ
n+1

)
2− 2 cos

(
kπ
n+1

)
Just like the Harmonic Oscillator, we are interested only in the limit where ε is

small. Likewise, in that regime we define,

εωk = sin (xk) (2.40)

for each k. Since ωk is finite for all k, we can choose the largest among them. The
ε is chosen in such that (2.40) holds for the largest ωk. It then automatically holds
for all k. This simplifies the determinant to,

(
1

ε2
)n(n+ 1)

n∏
k=1

1− sin (xk)
2

sin ( πk
2(n+1)

)2

In the asymptotic limit, the product reduces to,

n∏
k=1

1− sin (xk)
2

sin ( πk
2(n+1)

)2
=

sin (
∑n

k=1 xk)∑n
k=1 sin (xk)

=
sin (ε

∑n
k=1 ωk)

ε
∑n

k=1 ωk
=

sinφ

φ
(2.41)

where,

φ =

∫ t

0

ω(t′)dt′ (2.42)

The pre-factor gives rise to an overall normalization just like the Harmonic Oscil-
lator case.
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2.4 The Final Expression

From (2.41), the integrals classified in Theorem 2 can be obtained by taking corre-
sponding partial derivatives with respect to coefficients of y2

j . This is facilitated by

the fact that all y2
j have different coefficients, βj =

−iMω2
j ε

2~ . Therefore the individual
integrals are,

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp
(iε
~

n∑
j′=1

[M
2ε2

(yj′ − yj′−1)2 −
Mω2

j′y
2
j′

2

])[ k∏
α=1

y
m′α
jα

]
dy1 · · · dyn (2.43)

=

√
M

2πi~t

k∏
α=1

[ ∂

∂βjα

]m′α√ ε
∑n

j=1 ωj

sin (ε
∑n

j=1 ωj)
(2.44)

=

√
M

2πi~t

k∏
α=1

[ ~
−iMεωj

∂

∂ωjα

]m′α√ ε
∑n

j=1 ωj

sin (ε
∑n

j=1 ωj)
(2.45)

=

√
M

2πi~t

k∏
α=1

[ ~
−iMωj

∂

∂φ

]m′α√ φ

sin (φ)
(2.46)

where m′ = m/2 for all α, the jacobian of transformation is,

∂

∂βjα
=

~
−iMεωj

∂

∂ωjα
(2.47)

And the last statement follows from the fact that φ in the discrete version is sum
over ωj. Substituting this back to (2.10),

√
M

2πi~t

∞∑
k=0

1

k!

(−i
~

)k ∞∑
m1=3

· · ·
∞∑

mk=3

∂

∂φ

∑
αm
′
α

√
φ

sin (φ)
lim
n→∞

εk×

n∑
j1=1

· · ·
n∑

jk=1

[ k∏
α=1

1

mα!

( ~
−iMωjα

)m′α ∂mα
∂xmα

V (x)|x=xcljα

]
(2.48)

At the limit the j sums becomes integrals,

√
M

2πi~t

∞∑
k=0

1

k!

(−i
~

)k ∞∑
m1=3

· · ·
∞∑

mk=3

k∏
α=1

1

mα!

( ~
−iM

)N ∂

∂φ

N
√

φ

sin (φ)[ k∏
α=1

∫ t

0

1

ω(tα)m′α
∂mα

∂xmα
V (x)|x=xcl(tα)dtα

]
(2.49)
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where we have defined, N =
∑

αm
′
α. This series expresses the complete path

integral as a functional of the classical path. The complete expression of the Kernel
is,

K(xb, xa; t, 0) =√
M

2πi~t
exp

iScl(xb, xa; t)

~

∞∑
k=0

1

k!

(−i
~

)k ∞∑
m1=3

· · ·
∞∑

mk=3

k∏
α=1

1

mα!

( ~
−iM

)N ∂

∂φ

N
√

φ

sin (φ)[ k∏
α=1

∫ t

0

1

ω(tα)m′α
∂mα

∂xmα
V (x)|x=xcl(tα)dtα

]
(2.50)

Equipped with this we can obtain the Dynamics of an initial wavefunction as,

ψ(xb, t) =

∫ ∞
−∞

K(xb, t;xa, 0)ψ0(xa)dxa (2.51)

which then, after a Madelung transformation, can be used to obtain the Quantum
Potential as,

Q(x, t) = − ~2

2M

∇2R(x, t)

R(x, t)
(2.52)

which then can be used to obtain the quantum Trajectories. Expression (2.50)
extends the domain of analytically solvable path integrals to any system whose clas-
sical action (and the path) can be computed in a closed form. In cases where the
trajectories cannot be obtained in closed form, we have argued that the problem can
be reduced to numerically computing the classical path as a BVP.

In the following chapter, we solve for a toy model of Anharmonic Oscilator to illus-
trate the computation of trajectories using expression (2.50). In this case the classical
action can be obtained in a closed form only perturbatively. We, use the perturbative
expression for classical action and leave the Quantum Part of the calculation exact.

2.5 Multidimensional Generalisation

Most of the derivation goes through while further generalising it to higher dimensions.
Only change is brought about through the Taylor Expansion of the potential, which
becomes multidimensional.

The generalisation to multidimensional (as well as multi-particle) case is done
easiest in the generalised coordinates. Consider a three dimensional space with,
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x = (x1, x2, x3). The potential is still a scalar V (x). x(t) defines a path in this
three dimensional space. We can split such a general path similar to (2.1)

x(t) = xcl(t) + y(t). (2.53)

This brings in changes in the Taylor expansion (2.5)

V (xj) = V (xclj + yj) = V (xclj ) +
∞∑
m=1

ymj
m!

DmV (x)|x=xclj
(2.54)

where,

DmV (x) =
∂mV (x)

∂xα1
1 ∂x

α2
2 ∂x

α3
3

(2.55)

α1 + α2 + α3 = m (2.56)

Accordingly the integrals over each dyj in (2.6) is replaced by the corresponding
volume integral dyj. In essence the higher dimensional case is like a foliation of
space in the one dimensional case, where each one dimensional line integral foliates
into a higher dimensional volume. For the multi-particle case the one-dimensional
case foliates into a 3n dimensional space. The rest of the derivation goes through
exactly. The y independent parts generate the exponentiation of classical action, and
the prefactor is written as a series, of various moments of k, only in this case the
partial derivatives are more diverse.



Chapter 3

Tunneling

In this chapter we turn to applications of the theory developed in chapter 2. The
Anharmonic Oscilator is one of the non-trivial case which has been studied in gory
details, both classically [26–29] and Quantum Mechanically [30], owing to its appli-
cability in various fields of of physics. Although for the initial value problem of the
equation of motion, the Classical Path [26, 27] and the Classical Action [29] are avail-
able in closed form, same is not true for the Boundary Value Problem. The solution
for classical path for the BVP is not even unique.

Hence to illustrate the closed form calculation of trajectories, we resort to derive
the Classical Action perturbatively and leave the Quantum Part of the calculation
exact. It is shown that, even in this mixed treatment, the model reproduces properties
of Barrier Tunneling.

3.1 The Anharmonic Oscillator

In general an Anharmonic potential (in one dimension) is any oscillator of the form,

V (x) =
1

2
MK2x

2 +
∞∑
n=3

1

n
MKnx

n

Where M is the mass of the particle, and the factors 1
n

has been added as they
simplify the form of the equations of motion. The even powers, are even functions of
x, and hence their presence produce symmetric anharmonicity (e.g. symmetric wells).
Whereas the odd powers can be tuned to render asymmetry and hence bias. The Kns
specifies the relative strengths of various anharmonicities.

For most cases of physical concerns the sum does not run to infinity. As long
as the highest power is positive, any motion under the action of the potential have
closed orbits, if the motion is Hamiltonian (i.e the total energy is a constant of
motion.) Presence of forcing/ damping term can complicate the dynamics (e.g the
Duffing Oscillator). The positivity of the highest power of position is also a necessary

27
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(a) a > 0 (b) a < 0

Figure 3.1: Graphic comparison of Anharmonic Potential (Green) with the corresponding Harmonic analouge (blue),
for positive and negative a respectively. The a < 0 case generates a double well. As is shown, positivity of K4 ensures
Bound State solutions unlike the corresponding Harmonic problem in this case. for a > 0 bound state periodic
solutions always exist for Hamiltonian systems.

condition for existence of bound states in Quantum Mechanics, which is necessary
requirement for most of the models having physical interest.

Although, in these cases, the classical treatments always gives rise to closed orbits,
the topology of the closed orbits, depends on relative signs of various Kns, which
decides how many wells are there, and how many of them are equivalent. The physical
significance this toy problem renders is listed in [26, 27, 30].

The potential hence reduces to,

V (x) =
1

2
Max2 +

1

4
MλKx4 (3.1)

where K is positive. As is shown in Fig. (3.1b), the double well is realised for
a < 0. That is the case we will be concerned hereafter. Here λ is the perturbation
parameter. The positional derivatives of this potential, which appears as a function
of classical path in (2.50) are,

∂

∂x
V (x) = Max+MλKx3

∂2

∂x2
V (x) = Ma+ 3MλKx2

∂3

∂x3
V (x) = 6MλKx

∂4

∂x4
V (x) = 6MλK

and all the higher derivatives vanish. Since the odd values m drops out in the sum,
the only non vanishing contribution in the sum comes from m = 4. This reduces
(2.50) to,
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K(xb, xa; t, 0) =√
M

2πi~t
exp

iScl(xb, xa; t)

~

∞∑
k=0

1

k!

(−i
~

)k
(

1

4!
)k
( ~
−iM

)2k( ∂
∂φ

)2k

√
φ

sin (φ)[ ∫ t

0

1

ω(t)2

∂4

∂x4
V (x)|x=xcl(t)dt

]k
=

√
M

2πi~t
exp

iScl(xb, xa; t)

~

∞∑
k=0

1

k!

(−i
~

)k
(

1

4!
)k
( ~
−iM

)2k( ∂
∂φ

)2k

√
φ

sin (φ)[ ∫ t

0

1

a+ 3λKxcl(t)2
6MλKdt

]k
(3.2)

which is reduced to,

K(xb, xa; t, 0) =√
M

2πi~t
exp

iScl(xb, xa; t)

~

∞∑
k=0

1

k!

(i~λK
4M

)k[ ∫ t

0

1

a+ 3λKxcl(t′)2
dt′
]k

( ∂
∂φ

)2k

√
φ

sin (φ)
(3.3)

Few observations are obvious at once from the expression (3.3). As λ goes to
zero, the series reproduces the Harmonic Oscillator Kernel. More importantly, at
the classical limit, as ~ goes to zero, the position dependent terms in the expansion
vanish. So the only contribution comes from the very first term (corresponding to

k = 0), which goes as exp
(
iScl

~

)
. This term, in the same limit, reduces to a Dirac

Delta around the classical path, and recovers the Classical Dynamics. At this limit,
the contribution from all other path vanishes.

In the next sections, we go on to compute the functional forms of the remaining
unknowns of (3.3), namely the classical path and the action perturbatively.

3.2 The Classical Problem

Perturbative Analysis

In regime of perturbation theory the potential is replaced by,

V (x) =
m

2
ω2

0x
2 + λ

mK

4
x4 (3.4)
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where lambda is the perturbation parameter.

We present here a perturbative analysis of the boundary value problem. The anal-
ogous treatment for the initial value problem is a standard text book example, E.g.
[1]. The standard perturbative ansatz is done on the amplitude,

x(t) = x0(t) + λx1(t) + λ2x2(t) + λ3x3(t) + · · · (3.5)

Substituting this in the Euler-Lagrnage Equation, we can obtain the equation of
motion order by order by collecting the powers of λ.

ω2
0x0(t) + x′′0(t) = 0

x0(t)3 + ω2
0x1(t) + x′′1(t) = 0

3x0(t)2x1(t) + ω2
0x2(t) + x′′2(t) = 0

3x0(t)x1(t)2 + 3x0(t)2x2(t) + ω2
0x3(t) + x′′3(t) = 0

...

The zeroth order equation for the classical path corresponds to the free simple
harmonic oscillator problem. Once we have the solution to x0(t), it can be used to
solve for the first order correction, treated as a forcing. Similarly, solving for the
n-th order correction requires knowledge of all the lower orders, and can be solved
recursively.

The boundary value problem for the zeroth order is given by,

ω2
0x0(t) + x′′0(t) = 0, x0(0) = xi, x0(tf ) = xf (3.6)

and the solution is evaluated as,

x0(t) =
xf sin[ω0t] + xi sin[ω0(tf − t)]

sin[ω0tf ]
(3.7)

The first order equation then becomes,

x0(t)3 + ω2
0x1(t) + x′′1(t) = 0, x1(0) = 0, x1(tf ) = 0 (3.8)

Now, sin(ω0t)
3 has two dominant frequencies, ω0, 3ω0. The presence of the ω0 term,

makes the forced oscillator resonant and hence the amplitude grows unboundedly.
This invariably after sometime crosses the perturbative regime breaking the ansatz.
The total solution upto first order, obtained by this method is plotted in figure (3.2a.)
This difficulty can be rectified by changing the perturbative ansatz using Linsted-
Poincare method.
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(a) close-up view (b) long time behaviour

Figure 3.2: The total solution for the classical boundary value problem upto first order obtained for various values of
ω0. The close-up view shows that indeed the solutions satisfy boundary conditions. The long term behaviour shows
its diverging nature irrespective of the value of ω0

Linsted-Poincare Method

The secular terms can be avoided, as in the initial value problem, by choosing an
ansatz that also allows for changing frequency as a result of the perturbation besides
the path.

x(t) = x0(t) + λx1(t) + λ2x2(t) + λ3x3(t) + · · · (3.9)

ω = ω0 + λω1 + λ2ω2 + λ3ω3 + · · · (3.10)

To obtain the equations of motion we first change the dynamical variable to φ =
ωt, and note that the Jacobian of the transformation is given by d

dt
= 1

ω
d
dφ

. Now

substituting the ansatz in the Euler-Lagrnage Equation, one can obtain the equations
of motion order by order by collecting the powers of λ. We denote d

dφ
with ’.

ω2
0x0(φ) + ω2

0x
′′
0(φ) = 0

Kx0(φ)3 + ω2
0x1(φ) + 2ω0ω1x

′′
0(φ) + ω2

0x
′′
1(φ) = 0

3Kx0(φ)2x1(φ) + ω2
0x2(φ) + ω2

1x
′′
0(φ) + 2ω0ω2x

′′
0(φ) + 2ω0ω1x

′′
1(φ) + ω2

0x
′′
2(φ) = 0

...

The general solution upto the first order for classical path is given by,

x0(φ) =A cos[θ + φ] (3.11)

x1(φ) =− A3K cos[3θ + φ] sin[φ]2

8w2
0

(3.12)

with A, θ being the undetermined constants, and,
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w1 =
3A2K

8w0

; w2 =
9A4K2

128w3
0

; w3 =
27A6K3

1024w5
0

; · · · (3.13)

Given this solution to the classical boundary value problem, the Classical Action
or the Hamilton’s Principal function can be obtained as follows,

S[xcl(t)] =

∫ tf

ti

dt L(xcl, ẋcl, t)

=
m

2

∫ tf

ti

dt [ẋcl(t)
2 − ω2x2

cl(t)−
K

2
xcl(t)

4]

=
m

2
xcl(t)ẋcl(t)|

tf
ti −

m

2

∫ tf

ti

dt xcl[ẍcl(t) + ω2xcl(t) +Kxcl(t)
3] +

mK

4

∫ tf

ti

dt xcl(t)
4

=
m

2
xcl(t)ẋcl(t)|

tf
ti +

mK

4

∫ tf

ti

dt xcl(t)
4

where we have obtained the third step from the second by an integration by parts
on the kinetic term and the second term of the third step evaluates to zero as its
integrand satisfies the Euler-Lagrange Equation.

3.3 Results

The classical action of the system is obtained , by substituting the classical path,
into the Lagrangian, integrating out time, and neglecting the terms of higher orders
in λ. The obtained action is denoted by Scl(xf , t;xi, 0) for the rest of the discussion.
The integration constants, A and φ , can be solved for the boundary conditions
x(0) = xi, x(t) = xf and substituted in expression of the classical action. The
inverse solution is not unique, and we choose the solution in which both A,φ are both
real and positive.

A =
√
x2
f + x2

i − 2xfxi cos[tω0] csc[tω0] (3.14)

φ = arccos

 xi sin[tω0]√
x2
f + x2

i − 2xfxi cos[tω0]

 (3.15)

The perturbative proagator till the first order of λ, then is given by,

K(xb, xa; t, 0) =√
M

2πi~t
exp

iScl(xb, xa; t)

~

[√
φ

sin (φ)
+
(i~λK

4M

)[ ∫ t

0

1

ω(t′)2
dt′
]( ∂
∂φ

)2

√
φ

sin (φ)

]
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(a) (b)

(c) (d)

Figure 3.3: Plots for the Probability Density for evolution of a Gaussian Wavelet under a perturbative Quartic
Anharmonic potential till first order with m = 1, k = −2, λ = 10−4, ~ = 1, with (a) λ = 0.01, (b) λ = 0.05 and (c)
λ = 0.2 respectively

The Angular frequency is defined as,

ω(t) =

√
1

m

∂2V (x)

∂x2
|x=xcl(t) (3.16)

Substituting (3.4), neglecting higher order terms and using the formula of double-
angles, the angular frequency becomes,

ω(t) =

√
a+

3KλA2

2
+

3KλA2

2
cos[2(ω0 +

3λA2

8ω0

)t+ 2φ] (3.17)

The integrals involving ω(t) can be computed analytically by expressing them as
elliptic integrals and using standard forms,[31, 32]
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(a) Probability density as a function of x,t
(b) Quantum potential as a function of x,t

Figure 3.4: Plots for the Probability Density and Quantum Potential for the double-well with M = 1, a = −2, λ =
10−4,K = 1, ~ = 1. As is shown, the quantum potential is negative in the right well, after certain an initial time.
This can be interpreted as lowering of the classical barrier.

∫ t

0

ω(t′)−2 dt′ =

arctan

[
w2

0 tan
[
1
2
t
(

3A2Kλ
8w0

+w0

)]
√
− 9

4
A4K2λ2+( 3

2
A2Kλ+w2

0)2

]
(

3A2Kλ
8w0

+ w0

)√
−9

4
A4K2λ2 +

(
3
2
A2Kλ+ w2

0

)
2

(3.18)

The figure reports the probability density and the Quantum Potential as function
of space and time, computed numerically using equations (1.13), for the parameter
values m = 1, a = −4, K = 3.2, ~ = 1 and various values of λ and the initial Gaussian
wavelet,

Ψ0(x0) = 0.997356e−3.125(1.1 +xi)
2

(3.19)

The parameters of the initial wave function is chosen such that the probability of
finding the particle in the left well is ∼ 1, as well as it is centered very close to the
barrier wall to show some interesting dynamics, even in its initial time of flight.

As is expected from earlier studies, a part of the probability density is clearly
observed to cross the classically forbidden barrier, which is situated at x = 0, and
the tunneling probability increases as the anharmonicity is increased, by tuning the
value of λ.

In a double well potential the Probability amplitude is expected to oscillate be-
tween two wells, which is not evident in our plots, and probably is rendered due to
higher order corrections. The higher order effects were not incorporated as our main
interest was in tunneling, which is well studied even within first order. However, as
is suggested by the formulation the incorporation should be straight forward. We
reserve this material for further study and discourse.

Another set of study was done to probe the nature of Quantum Potential, as the
barrier penetration happens. The figure (3.4b) reports the probability density and
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the Quantum Potential as function of space and time, computed numerically using
equations (1.13), for the parameter values M = 1, a = −2, λ = 10−4, K = 1, ~ = 1
and the initial Gaussian wave packet,

Ψ0(xi) =
1√

2πα2
e
−(xi−l)

2

2α2 (3.20)

where for the purpose of the plot we have chosen α = 0.4 and l = −3.126.

Bohm had interpreted the mechanism of tunneling by proposing that the Quantum
Potential creates channels, by lowering the applied potential. If the QP is negative
then the effective total potential is lower than the actual applied potential. Then
the whole dynamics can be seen as a blob of fluid traversing through the lowered
potential.[10] On the other hand according to Wyatt [15] et al, it is the initial posi-
tion dependent acceleration, during initial period of flight, that causes certain fluid
elements to fly over the classical barrier. That is, whether a particle will be tunneled
or not, is encoded in its initial position in the wave-packet which determines the ac-
celeration for initial moments. This in turn would dictate whether the particle will
finally gather enough momentum to cross the barrier.

Our results indicate a reconciliation of the two seemingly contradicting views. The
fact that Bohm’s interpretation is validated is obvious from the flat groove travelling
towards the right well in the Quantum Potential, as well as, the fact that, initially
the QP is steep, and thus its gradient is large. Depending on the initial position of
the fluid element, the force directs it to either the left or the right well. However,
with time the QP becomes flat and thus its gradient becomes zero. Thus, it is only
the initial time of flight that decides the fate of the fluid element in crossing the
barrier, and to a good approximation the QP can be neglected for further dynamics,
as was conceived by Wyatt. Both the interpretations are thus found to be completely
consistent with each other as far as the toy model is concerned.1. Exploration in this
direction using more complicated and general models forms material for further study
and discourse.

1Other studies on tunneling using quantum trajectories can be found in [33]
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Conclusions

To summarize, in this paper we have bridged the Quantum Fluid Dynamics with
the Path Integral formulation and presented a general derivation of the Quantum
Potential of QFD from the principles of Path Integrals, expressing it analytically as
a functional of the classical path and the initial wave-function of a system. These
analytical expressions are valid for any general well-behaved potential, and can be
provided to computers directly as inputs, completely bypassing the task of solving
the Schrodinger’s equation, to compute the QP and trajectories. For any given initial
wave-function the computation requires to solve the boundary value problem for
the classical path, which has linear time complexity, thus making it faster than any
preceding algorithm.

QP is regarded as the origin of non-locality in QFD[10, 15]. Invoking Feynman’s
idea of contribution from all possible paths in governing the dynamics, and quanti-
fying their overall effect in the Dynamics, the formulation presented in this paper,
unravels a new arena of possibilities in the understanding of the processes quantum
nonlocality and entanglement, which are of utmost importance in the fields of Quan-
tum Meteorology, Condensed Matter systems and most importantly in developing
Quantum Computers. The various terms in the series in (2.50), quantify different
kind of correlations. This is best explained in an analogy with Quantum Circuits.

Consider the space to be a discrete lattice. In the circuit model of quantum compu-
tation a finite dimensional Hilbert space (usually qubits) lives at every lattice points,
and the time evolution is given by unitary gates connecting qubits of an instant with
qubits of the next. the number of qubits one gate mixes by its action, is the number
of legs that the gate has. And different number of gates gives generate different type
of correlations. Now consider a discrete version of (2.50). The integrals are changed
into sums, and various order of k generates correlations between various modes of m,
which in turn generates spatial and temporal correlations through the various par-
tial derivatives of the potential. Likewise the different n-legged gates in a quantum
circuit, the series allows one to study separate orders of correlation for continuum
systems individually.

It might be worthwhile to note, we have not used any extra assumptions than the
original quantum theories and have merely mathematically connected results of two
preexisting seemingly disconnected nodes. Recently, Quantum Fluids have found re-

36



CHAPTER 4. CONCLUSIONS 37

cent applications in the non-linear framework of Gross-Pitaevski equations[34], which
governs the dynamics of BEC, soliton-polariton semiconductor systems etc. There are
several straight-forward scopes of generalizing our work to these domains, to generate
analytical solutions. From a mathematical perspective, this problem is interesting, as
the integral formulation corresponding to a non-linear PDE is not well understood.
Enquiry in this direction can open up an opportunity to study at least a special class
of those.
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