
Bistability dynamics in the dissipative
Dicke-Bose-Hubbard system

Tianyi Wu, Sayak Ray and Johann Kroha

1 / 23



Outline

▶ Cold atoms in optical resonator

▶ Correlated phases in Dicke-Hubbard model

▶ Bistability and switching dynamics

▶ Summary and Outlook
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Two-level atoms in optical cavity

▶ Spins in single mode cavity:
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▶ Dicke QPT (g = g̃): normal → superradiant state at gc =
√
Ωω/2.
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Realization of the Dicke model

▶ Momentum states of each atom are mapped to atomic excitation.

▶ Dicke superradiance is signalled by onset of self-organized BEC.
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Non-equilibrium phenomena with Dicke model
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Non-equilibrium phenomena with Dicke model

Relaxation towards lasing
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Many-body self-organization

�� ��Chaos and effective thermalization
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BECs in 2-D optical lattice coupled to cavity

�� ��New things in two dimensions

▶ Physics of strong correlation in
lattice.

▶ Off-diagonal long-range order
exists at zero temperature.

▶ Extended Bose-Hubbard model
including cavity-atom
interactions with Z2 symmetry
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Dicke-Bose-Hubbard model in two-dimensions

▶ Hamiltonian: Ĥ = Ĥa + Ĥc + Ĥac

Cavity: Ĥc = Ωâ†â

BHM: Ĥa = −J
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▶ Dissipative dynamics:

�� ��˙̂ρ = −i[Ĥ, ρ̂] + κL[â]

▶ Cluster mean-field Hamiltonian: Ĥ = Ĥc +
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MF factorization and orderparameters

▶ ρ̂ =
(∏

l ρ̂Cl

)
× ρ̂c →
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c = Ωâ†â−
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▶ Orderparameters and characterization of various phases.�� ��Dicke phases

Photon amplitude: α = ⟨â⟩/
√
L

Photon number: nP = ⟨â†â⟩/L�� ��condensate phases

condensate amp.: Φe,o = ⟨b̂e,o⟩
boson density: ne,o = ⟨n̂e,o⟩

�� ��Schematics of various atomic phases
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Ground state phase diagram at zero temperature

▶ Phase diagram for ⟨n̂⟩ = 1 with κ = 0.

▶ Λ = Nb
Nczc/2

, Nc,b: size & bonds in

cluster, zc: co-ordination no.

▶ Dicke transition is discontinuous
below (Jc/U, λc/U) ≈ (0.105, 0.77).

▶ Consistent with QMC and B-DMFT
in equilibrium.

�� ��Dicke transition with jump
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Bistability and co-existence of phase�� ��Coexistence of phases for density ⟨n̂e⟩+ ⟨n̂o⟩ = 2 and for 1× 2 cluster
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▶ Bistabilities between condensate phases and
insulating phases are observed.

▶ The bistability boundaries meet at critical
Jc/U , where Dicke transition is continuous.

▶ Dashed: QPT (gr. state).

▶ Dotted: QPT lines
extended to bistability.

▶ Solid: bistability border.

▶ Red(blue): jump(cont.).�� ��SF-SS coexistence
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Switching dynamics in bistability�� ��Oscillations between SF and SS phases

▶ At t = 0 the system is in
SS ground state.

▶ Excess energy is provided
by photon field:
α(t = 0) = αGS + δα.

▶ Unitary time-evolution is
performed for κ = 0.�� ��Local number state distribution of atoms

▶ Po(e)(n) = ⟨n|Tre(o)ρ̂Cl
|n⟩, |n⟩ is the number state of bosons.
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Observation of hysteresis�� ��Linear ramp in λ across the discontinuous transition from SF to SS
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▶ At t = 0 the system is in
SF ground state, α = 0.

▶ Linear ramp in λ(t):
0.74 ↔ 0.8 (UτQ = 103).

▶ Dashed line: nP for GS
(jump at QPT).

▶ Dotted line: Bistability
border obtained from
numerical self-consistency.�� ��τQ-dependence

▶ Increasing τQ → dynamics
is more adiabatic

▶ τQ → ∞: transition agrees
with bistability boundary.
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Relaxation dynamics with finite dissipation

▶ Time-evolution of orderparameters with different initial
preparations. Parameters: J/U = 0.09 and κ/U = 1.08.
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▶ Dashed and solid lines → initial SF and DW states, respectively.
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Steady states and bistability with finite dissipation

▶ Orderparameters vs λ in steady states for J/U = 0.09 and κ/Ω = 1.08
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▶ Coexistence region for several
values of κ/U .

▶ Bistability occurs at a higher λ/U
with finite κ/U .

▶ Width of coexistence region ∆λ/U
is less sensitive to κ/U .
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Summary

▶ Bistability and dissipative dynamics of BEC in Dicke-Bose-Hubbard
model

▶ Ground state phase diagram at T = 0 and at κ = 0

▶ CMF for time evolution in long-range interacting system

▶ Discontinuous behaviour at Dicke transition and several
coexistence regions (survives under dissipation)
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▶ Switching dynamics and hysteresis behavior in bistability
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Phase diagram with ⟨n̂⟩ = 1/2
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BHM phase diagram (CMF vs QMC)
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Number state distribution of photon wavefunction

▶ The parameters are: J/U = 0.08 and λ/U = 0.76 for which the GS is SS phase.
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▶ Red dots: Coherent state of photon |ψ⟩c = e−|α|2/2eαa† |0⟩.
▶ Solid line: Photon wavefunction |ψ⟩ in SS phase, and α = ⟨ψ|â|ψ⟩.

20 / 23



Dynamics of condensate in bistability�� ��Dynamics of condensate and total boson density across SF-SS transition

�� ��Oscillatory dynamics of condensate between SF and SS phases
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Bistability and orderparameters
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Effect of atom-photon entanglement

▶ Initial state preparation: |ψ(t = 0)⟩ = |ψ⟩1×2
DW/SS

⊗
|ψ⟩c. Coherent state of

photon: |ψ⟩c = e−|α|2/2eαa† |0⟩

▶ Longer relaxation time, tunnelling between attractors.

23 / 23


