
BAF HTCSS: Usage HTCSS: Admins Summary Outline

BAF Cluster Computing

PI IT Team
David Berghaus, Oliver Freyermuth, Frank Frommberger, Michael Hübner1,

Katrin Kohl, Ernst-Michail Limbach-Gorny2, Andreas Wißkirchen & more helping
hands in projects

it-support@physik.uni-bonn.de

29th November, 2023
1

started April 2023
2

started June 2023

1/ 32

mailto:it-support@physik.uni-bonn.de


BAF HTCSS: Usage HTCSS: Admins Summary Outline

Outline

1 Behind the scenes: Queuing jobs on
the BAF cluster

2/ 32



BAF HTCSS: Usage HTCSS: Admins Summary BAF evolution BAF news

BAF Cluster

2017: Started with 40 worker nodes, 2240 logical cores
2019 and 2020: 3 waves of memory upgrades
February 2020: 4 x NVIDIA GeForce GTX 1080 Ti,
11GB VRAM
July 2020: Integration of 56 worker nodes in HRZ
institute machine room (‘CephFS_IO’),
new total: 3776 logical cores
November 2020: Extension with 4 worker nodes,
new total: 4288 logical cores
April 2023: Extension with 11 worker nodes, 1
high-memory node: 4TB RAM,
new total: 7104 logical cores

produce significant heat (1 kW per node)
fileservers upgraded to 8� 10 Gbit=s in June 2023

3/ 32



BAF HTCSS: Usage HTCSS: Admins Summary BAF evolution BAF news

BAF Cluster

2017: Started with 40 worker nodes, 2240 logical cores
2019 and 2020: 3 waves of memory upgrades
February 2020: 4 x NVIDIA GeForce GTX 1080 Ti,
11GB VRAM
July 2020: Integration of 56 worker nodes in HRZ
institute machine room (‘CephFS_IO’),
new total: 3776 logical cores
November 2020: Extension with 4 worker nodes,
new total: 4288 logical cores
April 2023: Extension with 11 worker nodes, 1
high-memory node: 4TB RAM,
new total: 7104 logical cores

produce significant heat (1 kW per node)
fileservers upgraded to 8� 10 Gbit=s in June 2023

3/ 32



BAF HTCSS: Usage HTCSS: Admins Summary BAF evolution BAF news

BAF Cluster: Nußallee 12

4/ 32



BAF HTCSS: Usage HTCSS: Admins Summary BAF evolution BAF news

BAF Cluster: Nußallee 12

first wave of
worker nodes

4/ 32



BAF HTCSS: Usage HTCSS: Admins Summary BAF evolution BAF news

BAF Cluster: Nußallee 12

file servers
(CephFS)

4/ 32



BAF HTCSS: Usage HTCSS: Admins Summary BAF evolution BAF news

BAF Cluster: Nußallee 12

newest
extension

newest
extension

4/ 32



BAF HTCSS: Usage HTCSS: Admins Summary BAF evolution BAF news

BAF Cluster: Wegelerstraße 6

31 racks
1 rack filled with 56 BAF
worker nodes (on the
right)

5/ 32



BAF HTCSS: Usage HTCSS: Admins Summary BAF evolution BAF news

BAF Cluster: News

Operating System Containers on BAF
Ubuntu 18.04 ) End of Life, not offered anymore
Ubuntu 20.04 ) End of Life in April 2025
Debian 10 ) End of Life in June 2024
Debian 11 and 12
CentOS 7 ) End of Life in June 2024
RockyLinux 8 and 9

6/ 32



BAF HTCSS: Usage HTCSS: Admins Summary BAF evolution BAF news

BAF Cluster: News

Organizational Developments
Ongoing convergence to one HTC cluster for Physics Institutes
Central HPC team: https://www.hpc.uni-bonn.de
offering courses on Linux, Python, building your own cluster,. . .
Coming soon: Large central HPC cluster ‘Marvin’

Inauguration October 20th (tomorrow)
Tests with ‘power users’ starting up
likely publicly available end of 2023

Ongoing discussions & plans to cover HTC and HPC use cases together

7/ 32

https://www.hpc.uni-bonn.de


BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

HTCondor
Workload Management system for dedicated resources, idle desktops, cloud
resources, . . .
Project exists since 1988 (named Condor until 2012)
New naming in 2022: HTCSS (HTCondor Software Suite)
Open Source, developed at UW-Madison, Center for High Throughput Computing
Key concepts:

‘Submit Locally. Run globally.’ (Miron Livny)
One interface to any available resource.
Integrated mechanisms for file transfer to / from the job
‘ClassAds’, for submitters, jobs, resources, daemons, . . .
Extensible lists of attributes (expressions) — more later!
Supports Linux, Windows and macOS and has a very diverse user base
CERN community, Dreamworks and Disney, NASA,. . .
Focus on decentralized operation models (Peer-to-Peer), heterogeneous resource
ownership
Dynamic integration of resources

8/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

HPC vs. HTC

High Performance Computing
tightly coupled massively parallel jobs which
may span many nodes and often need
low-latency interconnects, e. g.

Climate simulations (grid cells
connected to each other)
Lattice calculations

High Throughput Computing
many jobs, often submitted in large batches,
usually loosely coupled or independent, goal
is large throughput of jobs and / or data,
e. g.

Event-based analysis (e. g. particle
physics, video rendering)
Simulation of single events
Parameter scans

9/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

HPC vs. HTC

High Performance Computing

low-latency, high bandwidth interconnect

converged memory access

High Throughput Computing

individual jobs on each CPU core,

no memory sharing

9/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

HTC: The tetris game
r
e
s
o
u
r
c
e
s

time

‘Tetris’ of resources: Individual,
independent jobs with diverse resource
requirements
‘Fragmentation’ of resources by design
Note: The resource axis is
multi-dimensional (tetris in many
dimensions!)

10/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

HPC: Priority rules

r
e
s
o
u
r
c
e
s

time

r
e
s
o
u
r
c
e
s

time

Large interconnected chunks of
resources used (up to the full cluster
system)
Priority dominates scheduling,
resources left empty to prepare for
large jobs

11/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

HPC with backfilling

r
e
s
o
u
r
c
e
s

time

r
e
s
o
u
r
c
e
s

time

Gaps in resource usage can be filled
with shorter HTC jobs
HPC schedulers are not well-suited for
tetris with many jobs
Overlay batch systems can work around
this (large placeholder job submitted,
‘tetris’ within)

12/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

What HTCondor needs from the user. . .

A job description / Job ClassAd
Resource request, environment, executable, number of jobs,. . .

Executable = some-script.sh
Arguments = some Arguments for our program $(ClusterId) $(Process)
Universe = vanilla
Transfer_executable = True

Error = logs/err.$(ClusterId).$(Process)
#Input = input/in.$(ClusterId).$(Process)
Output = logs/out.$(ClusterId).$(Process)
Log = logs/log.$(ClusterId).$(Process)

+ContainerOS="Rocky8"
Request_cpus = 2
Request_memory = 2 GB
Request_disk = 100 MB

Queue

13/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

What HTCondor needs from the user. . .

some-script.sh

Often, you want to use a wrapper around complex software
This wrapper could be a shell script, python script etc.
It should take care of:

Argument handling
Environment setup (if needed)
Exit status check (bash: consider -e)
Data handling (e.g. move output to shared file system)

#!/bin/bash
source /etc/profile
set -e
SCENE=$1

cd ${SCENE}
povray +V render.ini
mv ${SCENE}.png ..

14/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

Submitting a job

$ condor_submit myjob.jdl
Submitting job(s)..
1 job(s) submitted to cluster 42.

There are many ways to check on the status of jobs:
condor_tail -f can follow along stdout / stderr
(or any other file in the job sandbox)
condor_q can access job status information (memory usage, CPU time,. . . )
log file contains updates about resource usage, exit status etc.
condor_history provides information after the job is done
condor_ssh_to_job may allow to connect to the running job
(if cluster setup allows it)

15/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

Advanced JDL syntax

Executable = /home/olifre/advanced/analysis.sh
Arguments = “-i ‘$(file)’”
Universe = vanilla
if $(Debugging)
slice = [:1]
Arguments = "$(Arguments) -v"

endif
Error = log/$Fn(file).stderr
Input = $(file)
Output = log/$Fn(file).stdout
Log = log/analysis.log
Queue FILE matching files $(slice) input/*.root

HTCondor offers macros and can queue variable lists, file names. . .
Can you guess what happens if you submit as follows?

condor_submit ’Debugging=true’ analysis.jdl

16/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

HTCondor’s commandline tools (in PATH)

condor_adstash condor_annex condor_check_config condor_check_password
condor_check_userlogs condor_config_val condor_continue condor_dagman
condor_docker_enter condor_drain condor_evicted_files condor_findhost condor_gather_info
condor_history condor_hold condor_job_router_info condor_now condor_nsenter condor_ping
condor_pool_job_report condor_power condor_prio condor_q condor_qedit condor_qsub
condor_release condor_remote_cluster condor_reschedule condor_rm condor_router_history
condor_router_q condor_router_rm condor_run condor_scitoken_exchange
condor_ssh_to_job condor_stats condor_status condor_submit condor_submit_dag
condor_suspend condor_tail condor_test_match condor_token_create condor_token_fetch
condor_token_list condor_token_request condor_token_request_approve
condor_token_request_auto_approve condor_token_request_list condor_top
condor_transfer_data condor_transform_ads condor_update_machine_ad condor_userlog
condor_userlog_job_counter condor_userprio condor_vacate condor_vacate_job
condor_vault_storer condor_version condor_wait condor_watch_q condor_who

17/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

HTCondor’s commandline tools (in PATH)

condor_adstash condor_annex condor_check_config condor_check_password
condor_check_userlogs condor_config_val condor_continue condor_dagman
condor_docker_enter condor_drain condor_evicted_files condor_findhost condor_gather_info
condor_historycondor_history condor_holdcondor_hold condor_job_router_info condor_now condor_nsenter condor_ping
condor_pool_job_report condor_power condor_prio condor_qcondor_q condor_qeditcondor_qedit condor_qsub
condor_releasecondor_release condor_remote_cluster condor_reschedule condor_rmcondor_rm condor_router_history
condor_router_q condor_router_rm condor_run condor_scitoken_exchange
condor_ssh_to_jobcondor_ssh_to_job condor_stats condor_statuscondor_status condor_submitcondor_submit condor_submit_dagcondor_submit_dag
condor_suspend condor_tailcondor_tail condor_test_match condor_token_create condor_token_fetch
condor_token_list condor_token_request condor_token_request_approve
condor_token_request_auto_approve condor_token_request_list condor_top
condor_transfer_data condor_transform_ads condor_update_machine_ad condor_userlog
condor_userlog_job_counter condor_userpriocondor_userprio condor_vacate condor_vacate_job
condor_vault_storer condor_version condor_wait condor_watch_qcondor_watch_q condor_who

condor_history condor_hold
condor_q condor_qedit

condor_release condor_rm

condor_ssh_to_job condor_status condor_submit condor_submit_dag
condor_tail

condor_userprio
condor_watch_q

17/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

Structure of HTCondor

schedd
startd

collector / negotiator

shadow
shadow
shadow

shadow

shadow

shadowshadow

starter
starter
starter
starter
starter
starter

Execution Point

Access Point

see also Architecture talk:
https://htcondor.org/event_
summary/htcondor_week_2020

18/ 32

https://htcondor.org/event_summary/htcondor_week_2020
https://htcondor.org/event_summary/htcondor_week_2020


BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

HTCondor’s processes

on access points (where you submit jobs)
condor_schedd Scheduler, keeps track of queue, spawns condor_shadow

condor_shadow Monitors a single job (plus logs etc.)

on execute points (worker nodes)
condor_startd Spawns condor_starter

condor_starter For each slot, takes care of jobs

19/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

Structure of HTCondor

startd

Central Manager

Execution PointAccess Point

negotiator collector

schedd

20/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

Structure of HTCondor

startd

Central Manager

Execution PointAccess Point

negotiator collector

schedd

submit

report slots

(machine classad)
report user

has jobs queued

send job classad

20/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

Structure of HTCondor

startd

Central Manager

Execution PointAccess Point

negotiator collector

schedd

query users

and slots

query jobs

Matchmaking:

Users get pie

slices (priorities),

resources matched

to jobs in order.

20/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

Structure of HTCondor

startd

Central Manager

Execution PointAccess Point

negotiator collector

schedd

inform about

match
inform about

match

20/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

Structure of HTCondor

startd

Central Manager

Execution PointAccess Point

negotiator collector

schedd

claim

resource

20/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

Structure of HTCondor

startd

Central Manager

Execution PointAccess Point

negotiator collector

schedd
claimed

20/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

Structure of HTCondor

startd

Central Manager

Execution PointAccess Point

negotiator collector

schedd
claimed

shadow
activate

claim

20/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

Structure of HTCondor

startd

Central Manager

Execution PointAccess Point

negotiator collector

schedd
claimed

shadow
activate

claim

run job

starter

20/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

Structure of HTCondor

startd

Central Manager

Execution PointAccess Point

negotiator collector

schedd
claimed

shadow
activate

claim

run job

starter

job

20/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

Structure of HTCondor

startd

Central Manager

Execution PointAccess Point

negotiator collector

schedd
claimed

20/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

Structure of HTCondor

startd

Central Manager

Execution PointAccess Point

negotiator collector

schedd
claimed

shadow
activate

claim

20/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

Structure of HTCondor

startd

Central Manager

Execution PointAccess Point

negotiator collector

schedd
claimed

shadow
activate

claim

run job

starter

20/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

Structure of HTCondor

startd

Central Manager

Execution PointAccess Point

negotiator collector

schedd
claimed

shadow
activate

claim

run job

starter

job

20/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

User Priorities in HTCondor

Every user / accounting group is given an effective priority
Effective priority approaches weighted resource usage (cores multiplied with priority
factor of 1000) in an exponential manner
Half-life constant configurable, in our case: 24 hours
Resources are distributed amongst accounts with queued jobs proportionally,
weighted by priority (‘pie slices’)

21/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

User Priorities in HTCondor

0

50000

100000

150000

200000

0 2 4 6 8 10 12 14
0

50

100

150

200
eff

ec
tiv

e
pr

ior
ity

re
so

ur
ce

us
ag

e /
CP

U
co

re
s

time/days

resource usage
effective priority

21/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

User Priorities in HTCondor

0

200000

400000

600000

800000

1000000

1200000

0 2 4 6 8 10 12 14
0

200

400

600

800

1000

1200
eff

ec
tiv

e
pr

ior
ity

re
so

ur
ce

us
ag

e /
CP

U
co

re
s

time/days

resource usage
effective priority

21/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

HTCondor’s ClassAds

Any submitter, job, resource,
daemon has a ClassAd
ClassAds are basically just
expressions (key = value)
Dynamic evaluation and merging
possible

Job ClassAd

Executable = some-script.sh
+ContainerOS = "Rocky8"

Request_cpus = 2
Request_memory = 2 GB
Request_disk = 100 MB

Machine ClassAd

Activity = "Idle"
Arch = "X86_64"
Cpus = 8
DetectedMemory = 7820
Disk = 35773376
has_avx = true
has_sse4_1 = true
has_sse4_2 = true
has_ssse3 = true
KFlops = 1225161
Name = "slot1@htcondor-wn-7"
OpSys = "LINUX"
OpSysAndVer = "Rocky8"
OpSysLegacy = "LINUX"
Start = true
State = "Unclaimed"

22/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

HTCondor’s ClassAds

Job and Machine ClassAd extended / modified by HTCondor configuration
Merging these ClassAds determines if job can run on machine
Examples for dynamic parameters:

Select a different binary depending on OS / architecture
Machine may only want to ‘Start’ jobs from some users

You can always check out the ClassAds manually to extract all information (use the
argument -long to commands!)
To extract specific information, you can tabulate any attributes (JSON also works!):

$ condor_q -all -global -af:hj Cmd ResidentSetSize_RAW RequestMemory RequestCPUs
ID Cmd ResidentSetSize_RAW RequestMemory RequestCPUs
2.0 /bin/sleep 91168 2048 1

23/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

DAGs: Directed Acyclic Graphs

Often, jobs of different type of an analysis chain depend on each other
Example: Monte Carlo, comparison to real data, Histogram merging,. . .
These dependencies can be described with a DAG
Condor runs a special ‘DAGMAN’ job which takes care of submitting jobs for each
‘node’ of the DAG, check status, limit idle and running jobs, report status etc.
(like a Babysitter job)
DAGMAN comes with separate logfiles, DAGs can be stopped and resumed
DAGs ae often used behind workflow frontends (e.g. video rendering,. . . )

24/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

Working with different environments

How to compile and test code?
Approach to access special environments or resources: interactive jobs

Advantage for admins: No separate bare metal machines
Advantage for users: Environment the same as in the job!

Compile the code, pack it into a tarball, copy to shared FS / condor file transfer /
CVMFS
Can be automated with scripts / if offered, job start hooks (like ‘.bashrc’)

Advantages of this approach
Portable and stable job executables
If combined with containers and ‘mobile data’: Mostly cluster independent jobs
possible

25/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

‘Choose your OS’
You add to the Job ClassAd:

+ContainerOS = "Rocky8"

Jobs run in a container
Same for interactive jobs (‘login-node experience’!)
Small fractions of worker nodes exclusively for interactive jobs
But: Interactive jobs can go to any slot!
Resource-request specific tuning via /etc/profile possible:

REQUEST_CPUS=$(awk ’/^RequestCpus/{print $3}’ ${_CONDOR_JOB_AD})
export NUMEXPR_NUM_THREADS=${REQUEST_CPUS}
export MKL_NUM_THREADS=${REQUEST_CPUS}
export OMP_NUM_THREADS=${REQUEST_CPUS}
export CUBACORES=${REQUEST_CPUS}
export JULIA_NUM_THREADS=${REQUEST_CPUS}

26/ 32



BAF HTCSS: Usage HTCSS: Admins Summary HPC/HTC JDL CLI tools Architecture Prios ClassAds Running Code

Noteworthy tools in and around HTCondor

Well-maintained Python API to directly talk to HTCondor daemons
HTMap allows to scale map-reduce like algorithms from Python into HTC clusters
HTCondor Adstash allows to push ClassAds from jobs / workers into ElasticSearch
HEP-Puppet/htcondor for managed deployment and configuration of HTCondor
MPI possible via parallel universe, even with containers, but manually tweaked
start script and dedicated schedd required, and would need to teach HTCondor
about interconnect topology
) Usually not a good fit for HTC

27/ 32

https://github.com/htcondor/htmap
https://github.com/HEP-Puppet/htcondor


BAF HTCSS: Usage HTCSS: Admins Summary Healthcheck

Node health checking: Reasons for ‘unhealthiness’
last ‘UNHEALTHY’ too recent (debouncing, � 10min)
writing of status files failed or syntax bad
(drain configuration, reboot marker, health state)
failed reboot actions
reboot scheduled (i.e. shutdown command with timeout)
minimum uptime (� 20min)
slow network interface (� 100Mbit=s)
bad kernel command line (e.g. should contain ‘console=’)
unhealthy CVMFS mounts
swap usage is too high (> 80%, HTCondor does not monitor swap)
iowait too high (> 15%)
number of processes in D state too large (> #logical cores

2 )
read / write of execute directory or > 80% used (don’t limit disk use yet)
administrative ‘UNHEALTHY’ marker
read / write of cluster file system, check if mount healthy
execution time of health check (> 10 s) 28/ 32



BAF HTCSS: Usage HTCSS: Admins Summary Healthcheck

Node health checking

29/ 32



BAF HTCSS: Usage HTCSS: Admins Summary Healthcheck

Node health checking

All health information accessible via ClassAds of the machines:

$ condor_status -compact -af:h Machine NODE_REBOOT_REASONS
Machine NODE_REBOOT_REASONS
wn000.baf.physik.uni-bonn.de
wn001.baf.physik.uni-bonn.de
wn002.baf.physik.uni-bonn.de

UPTIME_TOO_LARGE:39d_7h_27m_11s,NEEDS_RESTARTING_REBOOTHINT,!

wn003.baf.physik.uni-bonn.de
UPTIME_TOO_LARGE:38d_23h_27m_19s,NEEDS_RESTARTING_REBOOTHINT,!

Used also for monitoring, transparent for the users
Similarly done for draining, planned reboots, node reservations, maintenances,
backfilling etc.

30/ 32



BAF HTCSS: Usage HTCSS: Admins Summary Conclusion

Conclusion

Key features of HTCondor
Decentralized operation model / Peer-to-Peer design
ClassAd system
Exponential evolution of user priority when fairshare is used
Potentially heterogeneous machine ownership supported
Opportunistic ressources can be integrated dynamically
File transfer possible

Quite some documentation on Confluence, online, passed down through PhD
generations,. . . How to get started?

31/ 32



BAF HTCSS: Usage HTCSS: Admins Summary Conclusion

User Tutorial

User tutorial

https://unibonn.github.io/htcondor-bonn/

The examples teach. . .
Interactive jobs and basic job submission
Submitting job arrays
Submitting DAGs
Checking on your jobs status, output, and acting on errors

Game-like (playing lottery with random numbers, rendering a video),
all examples produce visible output, but still cover features used in physics analysis.

32/ 32

https://unibonn.github.io/htcondor-bonn/
https://unibonn.github.io/htcondor-bonn/


Thank you

for your attention!



Network Infra JupyterHub

HTCondor Networking: JupyterHub

HTCondor execute & submit node(s) keep connection to CCB

HTCondor submit node

HTC/HPC Cluster
(NAT, isolated, local or remote)

HTCondor

Central Manager & CCB Bidirectional connection established => SSH tunnel

Startd service on execute node contacts submit node on request

relayed via CCB

Hub

Configurable

HTTP Proxy

User with web browser

https + WebSockets

Apache2 (SSL)

Jupyter Single User Notebook API call

http + WebSockets

Single User Notebook

(spawned, random port)

Hub
WN

XPRA

RStudio

Theia
jupyter-

server-

proxy

34/ 32



Network Infra CCB Server Rooms

HTCondor Networking

HTCondor

Submit Node

HTC/HPC Cluster

(local or remote)

HTCondor

Central Manager & CCB

35/ 32



Network Infra CCB Server Rooms

HTCondor Networking

HTCondor

Submit Node

HTC/HPC Cluster

(local or remote)

HTCondor

Central Manager & CCB

Firewalling & NAT

- FW on each node (HTCondor port open)

- NAT(s), router(s), FWs in front of cluster networks

35/ 32



Network Infra CCB Server Rooms

HTCondor Networking

HTCondor

Submit Node

HTC/HPC Cluster

(local or remote)

HTCondor

Central Manager & CCB

Firewalling & NAT

- FW on each node (HTCondor port open)

- NAT(s), router(s), FWs in front of cluster networks

Note: 

Via the shared port daemon,

only a single port needs to be open

on the submit node and CCB node

HTCondor execute

& submit node(s)

keep connection to CCB

35/ 32



Network Infra CCB Server Rooms

HTCondor Networking

HTCondor

Submit Node

HTC/HPC Cluster

(local or remote)

HTCondor

Central Manager & CCB

Firewalling & NAT

- FW on each node (HTCondor port open)

- NAT(s), router(s), FWs in front of cluster networks

Note: 

Via the shared port daemon,

only a single port needs to be open

on the submit node and CCB node

HTCondor execute

& submit node(s)

keep connection to CCB

Startd service on

execute node

contacts submit node

on request relayed

via CCB

35/ 32



Network Infra CCB Server Rooms

HTCondor Networking

HTCondor

Submit Node

HTC/HPC Cluster

(local or remote)

HTCondor

Central Manager & CCB

Firewalling & NAT

- FW on each node (HTCondor port open)

- NAT(s), router(s), FWs in front of cluster networks

Note: 

Via the shared port daemon,

only a single port needs to be open

on the submit node and CCB node

HTCondor execute

& submit node(s)

keep connection to CCB

Startd service on

execute node

contacts submit node

on request relayed

via CCB

Bidirectional connection

established

35/ 32



Network Infra CCB Server Rooms

Server Rooms: HRZ Institute Machine Room

56 worker nodes (‘rear view’)
1 Gbit=s ethernet, switches with 10 Gbit=s uplink
) CephFS_IO ‘medium’
Nodes have to be drained (starting 7 days
before!) if outside temperature exceeds � 35 °C
Relying on DWD MOSMIX (Model Output
Statistics-MIX) calculations, quite reliable (with
error bands!)

36/ 32



Network Infra CCB Server Rooms

Server Rooms: FTD

6 racks:
2 network distribution
and file servers
2 service machines
2 phone infrastructure

central 60 kW UPS

37/ 32



Network Infra

Server Rooms

HRZ machine room HISKP PI FTD

38/ 32

BAF Cluster: Compute Nodes
(location HISKP coming soon)

BAF Cluster:
Storage

Virtualization infrastructure
almost 120 VMs, hypervisors and storage

redundant, Ceph RADOS Block devices, 3 copies

Backup system
redundant, Ceph RADOS, 3 copies


	Outline
	BAF
	BAF evolution
	BAF news

	HTCSS: Usage
	HPC/HTC
	JDL
	CLI
	Architecture
	Priorities
	ClassAds
	Running Code

	HTCSS: Admins
	Healthcheck

	Summary
	Conclusion

	Appendix
	JupyterHub
	Network
	CCB
	Server Rooms

	Infrastructure


