Journal Club

Julien Bréhier
November 15, 2023

Table of contents

Simulation of Stabilizer Circuits : The Gottesman-Knill theorem

1 Introduction

2 A bit of groups

3 The Gottesman-Knill Theorem

4 CHP simulation

5 Examples

Introduction

(Dos and) Don'ts in Quantum Information

Introduction

(Dos and) Don'ts in Quantum Information

1 No-teleportation Theorem

Introduction

(Dos and) Don'ts in Quantum Information
(1) No-teleportation Theorem

2 No-cloning Theorem

Introduction

(Dos and) Don'ts in Quantum Information

1 No-teleportation Theorem
2 No-cloning Theorem
(3) No-deleting Theorem

Introduction

(Dos and) Don'ts in Quantum Information
(1) No-teleportation Theorem

2 No-cloning Theorem
(3) No-deleting Theorem
(4) No-broadcast Theorem

1 No-teleportation Theorem
2 No-cloning Theorem
(3) No-deleting Theorem

4 No-broadcast Theorem
5 No-hiding Theorem
(1) No-teleportation Theorem

2 No-cloning Theorem
(3) No-deleting Theorem

4 No-broadcast Theorem
(5) No-hiding Theorem

A positive note!
The Gottesman-Knill Theorem : ‘ ... can ...'

A bit of groups

Pauli Matrices \rightarrow Pauli Group

A bit of groups

Pauli Matrices \rightarrow Pauli Group

The Pauli Matrices :

$$
\sigma_{X}=X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{y}=Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{z}=Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

A bit of groups

Pauli Matrices \rightarrow Pauli Group

The Pauli Matrices :

$$
\sigma_{X}=X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{y}=Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{z}=Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The Pauli Group

$$
\mathcal{P}_{n}=\{ \pm 1, \pm i\} \times\left\{X^{a_{1}} Z^{b_{1}} \otimes \ldots \otimes X^{a_{n}} Z^{b_{n}}\right\}
$$

A bit of groups Clifford group

A bit of groups

 Clifford groupThe normalizer of the Pauli Group

$$
\mathcal{C}_{n}=\left\{c \in \mathcal{U}\left(2^{n}\right) \mid c \mathcal{P}_{n} c^{\dagger}=\mathcal{P}_{n}\right\}
$$

A bit of groups

The normalizer of the Pauli Group

$$
\mathcal{C}_{n}=\left\{c \in \mathcal{U}\left(2^{n}\right) \mid c \mathcal{P}_{n} c^{\dagger}=\mathcal{P}_{n}\right\}
$$

This group can be generated by:

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), C=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right), P=\sqrt{Z}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{\frac{i \pi}{2}}
\end{array}\right)
$$

A bit of groups
 Clifford transformations

What does a Clifford map a Pauli to ?

$$
\begin{aligned}
H Z & \longleftrightarrow X H \\
P X & \longleftrightarrow Y P \\
P Z & \longleftrightarrow Z P \\
C\left(X_{1} \otimes \mathbb{1}_{2}\right) & \rightarrow\left(X_{1} \otimes X_{2}\right) C \\
C\left(\mathbb{1}_{1} \otimes X_{2}\right) & \rightarrow\left(\mathbb{1}_{1} \otimes X_{2}\right) C \\
C\left(Z_{1} \otimes \mathbb{1}_{2}\right) & \rightarrow\left(Z_{1} \otimes \mathbb{1}_{2}\right) C \\
C\left(\mathbb{1}_{1} \otimes Z_{2}\right) & \rightarrow\left(Z_{1} \otimes Z_{2}\right) C
\end{aligned}
$$

A bit of groups
 \author{ Stabilizers

}
A bit of groups

Stabilizers
Stabilizer / Stabilized sub-space

$$
\left.S_{|\psi\rangle}=\left\{\boldsymbol{s} \in \mathcal{P}_{n}|\boldsymbol{s}| \psi\right\rangle=+|\psi\rangle\right\}
$$

A bit of groups
 Stabilizers

Stabilizer / Stabilized sub-space

$$
\begin{gathered}
\left.S_{|\psi\rangle}=\left\{\boldsymbol{s} \in \mathcal{P}_{n}|\boldsymbol{s}| \psi\right\rangle=+|\psi\rangle\right\} \\
\left.V_{s}=\left\{|\psi\rangle \in \mathbb{C}^{2 n}|\forall \boldsymbol{s} \in \boldsymbol{S}, \boldsymbol{s}| \psi\right\rangle=|\psi\rangle\right\}
\end{gathered}
$$

A bit of groups

Stabilizer / Stabilized sub-space

$$
\begin{gathered}
\left.S_{|\psi\rangle}=\left\{s \in \mathcal{P}_{n}|s| \psi\right\rangle=+|\psi\rangle\right\} \\
\left.V_{s}=\left\{|\psi\rangle \in \mathbb{C}^{2 n}|\forall s \in S, \boldsymbol{s}| \psi\right\rangle=|\psi\rangle\right\}
\end{gathered}
$$

Conservation of the stabilizer group

$$
c|\psi\rangle=c s|\psi\rangle=c s c^{\dagger} c|\psi\rangle=\left(c s c^{\dagger}\right) c|\psi\rangle
$$

A bit of groups

Stabilizer / Stabilized sub-space

$$
\begin{gathered}
\left.S_{|\psi\rangle}=\left\{s \in \mathcal{P}_{n}|s| \psi\right\rangle=+|\psi\rangle\right\} \\
\left.V_{s}=\left\{|\psi\rangle \in \mathbb{C}^{2 n}|\forall s \in S, \boldsymbol{s}| \psi\right\rangle=|\psi\rangle\right\}
\end{gathered}
$$

Conservation of the stabilizer group

$$
\begin{gathered}
c|\psi\rangle=c s|\psi\rangle=c s c^{\dagger} c|\psi\rangle=\left(c s c^{\dagger}\right) c|\psi\rangle \\
\left|\psi^{\prime}\right\rangle=s^{\prime}\left|\psi^{\prime}\right\rangle
\end{gathered}
$$

A bit of groups

Stabilizers

Stabilizer / Stabilized sub-space

$$
\begin{gathered}
\left.S_{|\psi\rangle}=\left\{\boldsymbol{s} \in \mathcal{P}_{n}|\boldsymbol{s}| \psi\right\rangle=+|\psi\rangle\right\} \\
\left.V_{s}=\left\{|\psi\rangle \in \mathbb{C}^{2 n}|\forall s \in S, s| \psi\right\rangle=|\psi\rangle\right\}
\end{gathered}
$$

Conservation of the stabilizer group

$$
\begin{gathered}
c|\psi\rangle=c s|\psi\rangle=c s c^{\dagger} c|\psi\rangle=\left(c s c^{\dagger}\right) c|\psi\rangle \\
\left|\psi^{\prime}\right\rangle=s^{\prime}\left|\psi^{\prime}\right\rangle
\end{gathered}
$$

Simply :

$$
s \rightarrow c s c^{\dagger}
$$

$$
s_{1} s_{2} \rightarrow c\left(s_{1} s_{2}\right) c^{\dagger}=c s_{1} c^{\dagger} c s_{2} c^{\dagger}=\left(c s_{1} c^{\dagger}\right)\left(c s_{2} c^{\dagger}\right)
$$

A bit of groups

Generating a group

A bit of groups
 Generating a group

Generating basis of a group
If $G=\operatorname{Span}\{K\}$ is a finite group over $\mathrm{V},|K| \leq \log _{2}(|G|)$

A bit of groups
 Generating a group

Generating basis of a group
If $G=\operatorname{Span}\{K\}$ is a finite group over $\mathrm{V},|K| \leq \log _{2}(|G|)$
This yields: $|K| \leq n$

Generating basis of a group
If $G=\operatorname{Span}\{K\}$ is a finite group over $\mathrm{V},|K| \leq \log _{2}(|G|)$
This yields: $|K| \leq n$

Stabilized subspace

Theorem : If the stabilizer group S has s independent and commuting generators in $\mathcal{P}_{n} \backslash\left\{-\left(\mathbb{1}^{\otimes n}\right)\right\}$, the stabilizied subspace V_{S} has size $\left|V_{S}\right|=2^{n-s}$

The Gottesman-Knill Theorem
Reminders

The Gottesman-Knill Theorem

Reminders

Storage
From the way we wrote the Pauli group $\mathcal{P}_{n}=\{ \pm 1\} \times\left\{X^{a_{1}} Z^{b_{1}} \otimes \ldots \otimes X^{a_{n}} Z^{b_{n}}\right\}$, storing a Pauli string is $2 n+1$ bits of informations.

The Gottesman-Knill Theorem

Reminders

Storage

From the way we wrote the Pauli group $\mathcal{P}_{n}=\{ \pm 1\} \times\left\{X^{a_{1}} Z^{b_{1}} \otimes \ldots \otimes X^{a_{n}} Z^{b_{n}}\right\}$, storing a Pauli string is $2 n+1$ bits of informations.

Operations
Updating S at every step is $O(n)$ operations.

The Gottesman-Knill Theorem
 Reminders

Storage

From the way we wrote the Pauli group $\mathcal{P}_{n}=\{ \pm 1\} \times\left\{X^{a_{1}} Z^{b_{1}} \otimes \ldots \otimes X^{a_{n}} Z^{b_{n}}\right\}$, storing a Pauli string is $2 n+1$ bits of informations.

Operations
Updating S at every step is $O(n)$ operations.
Measurements
Doing a measurement is $O\left(n^{3}\right)$

The Gottesman-Knill Theorem
Formulation of the Theorem

The Gottesman-Knill Theorem
 Formulation of the Theorem

G.-K. Theorem

A unitary evolution including only:

- Initialization in the measurement basis $(O(1))$
- Operations in the Clifford group* $(O(n))$
- Measurement of Pauli operators $\left(O\left(n^{3}\right)\right)$
can be simulated efficiently (ie. in polynomial time) on a classical computer.

The Gottesman-Knill Theorem
 Formulation of the Theorem

G.-K. Theorem

A unitary evolution including only:

- Initialization in the measurement basis $(O(1))$
- Operations in the Clifford group* $(O(n))$
- Measurement of Pauli operators $\left(O\left(n^{3}\right)\right)$
can be simulated efficiently (ie. in polynomial time) on a classical computer.
What for?
Quantum teleportation, GHZ experiment, superdense coding, QEC protocols, ...

The Gottesman-Knill Theorem

 Why is measurements $O\left(n^{3}\right)$?
The Gottesman-Knill Theorem
 Why is measurements $O\left(n^{3}\right)$?

Updating the stabilizer group
When measuring a quantity $q \in \mathcal{P}_{n}$, we get a result ± 1 and thus $\pm q$ becomes a stabilizer.

The Gottesman-Knill Theorem
 Why is measurements $O\left(n^{3}\right)$?

Updating the stabilizer group
When measuring a quantity $q \in \mathcal{P}_{n}$, we get a result ± 1 and thus $\pm q$ becomes a stabilizer.
2 cases :

The Gottesman-Knill Theorem
 Why is measurements $O\left(n^{3}\right)$?

Updating the stabilizer group

When measuring a quantity $q \in \mathcal{P}_{n}$, we get a result ± 1 and thus $\pm q$ becomes a stabilizer.
2 cases :

- q commutes with S.

Find the decomposition of q in the basis of stabilizers (matrix inversion) to find deterministically the value of the measurement.

The Gottesman-Knill Theorem

Why is measurements $O\left(n^{3}\right)$?

Updating the stabilizer group

When measuring a quantity $q \in \mathcal{P}_{n}$, we get a result ± 1 and thus $\pm q$ becomes a stabilizer.
2 cases :

- q commutes with S.

Find the decomposition of q in the basis of stabilizers (matrix inversion) to find deterministically the value of the measurement.

- q anti-commutes with at least one element in S.

Choose an anti-commuting stabilizer s_{1}, multiply all the others by s_{1} and replace s_{1} with q. Flip a coin to get the measurement.

Price to pay
$s(2 n+1) \rightarrow 2 s(2 n+1)$ bits, $O\left(n^{3}\right) \rightarrow O\left(n^{2}\right)$ complexity

How?

Add s "destabilizers", generating the entire \mathcal{P}_{n} such that :

$$
\begin{gathered}
{\left[D_{i}, D_{j}\right]=0, \forall i, j} \\
\left\{S_{i}, D_{i}\right\}=0 \forall i \\
{\left[D_{i}, S_{j}\right]=0, \forall i \neq j}
\end{gathered}
$$

CHP simulation

Updating the stabilizers and measurements

Quick example
See the board

CHP simulation

Updating the stabilizers and measurements

Quick example
See the board
Use of D_{i}
We have to solve $\sum_{s} c_{h} S_{h}= \pm Z_{a}$.
However:

$$
c_{i} \equiv \sum_{s} c_{h}\left(D_{i} \square S_{h}\right) \equiv D_{i} \square Z_{a}(\bmod 2)
$$

CHP simulation

Perfomance run by S. Aaronson, 256 MB ram, Pentium III 650MHz

Examples
Surface codes

Examples

Examples

Beyond

A stronger formalism
Graph states : https://arxiv.org/abs/quant-ph/0504117
Small non-Clifford noise
Exponentially bad but manageable in a small amount.

References

D. Gottesman's Thesis : https://arxiv.org/abs/quant-ph/9705052
D. Gottesman's paper on the potency of Clifford simulation :
https://arxiv.org/abs/quant-ph/9807006
D. Gottesman's and S. Aaronson's paper : https://arxiv.org/abs/quant-ph/0406196
S. Aaronson's website : https://www.scottaaronson.com/chp/ Introductory lecture notes on stabilizer formalism and clifford simulation: https://quantum.phys.cmu.edu/groupth/talk30Jan2009.pdf stim, a Pyhton fast stabilizer circuit simulator : https://github.com/quantumlib/Stim

Thank you for your attention

Quantum Error Correction Sonnet, Daniel Gottesman

> We cannot clone, perforce; instead, we split Coherence to protect it from that wrong
> That would destroy our valued quantum bit
> And make our computation take too long.
> Correct a flip and phase - that will suffice.
> If in our code another error's bred,
> We simply measure it, then God plays dice, Collapsing it to X or Y or Zed. We start with noisy seven, nine, or five And end with perfect one. To better spot Those flaws we must avoid, we first must strive To find which ones commute and which do not.
> With group and eigenstate, we've learned to fix Your quantum errors with our quantum tricks.

