Partial disorder in two-dimensional spin systems

October, 2023 - Journal Club ~17 slides

Franco Lisandrini (AG Kollath)

Partial Disorder (PD)

Coexistence of order and disorder

Ordered subsystem

- Algebraically decaying correlations
- Finite magnetization

Disordered subsystem

- Exponentially decaying correlations
- Ideal paramagnet?

PD at finite temperature

Kondo lattice model (triangular)

PD at finite temperature

Kondo lattice model (triangular)

Ishizuka and Motome, PRB 87, 155156 (2013)

• AF + Ideal Paramagnet • Finite temperature Strong anisotropy

Heisenberg model and Frustration

Heisenberg model

Toy models

$$H = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J' \sum_{[ik]} \mathbf{S}_i \cdot \mathbf{S}_k$$

Magnetic Frustration

 $J_{c} = 0.63J$

Stuffed honeycomb lattice

Gonzalez et al., PRL 122, 017201 (2019)

Stuffed honeycomb lattice

Known limits

180° Néel order

Gonzalez et al., PRL 122, 017201 (2019)

120° Néel order

Magnetization

Gonzalez et al., PRL 122, 017201 (2019)

MPS simulations • $L_y = 6$ • CBC, $L_X > L_y/2$ • D = 3000 • t.e. < 10^{-6}

 $m_{\alpha}^{2} = \frac{1}{N_{\alpha}(N_{\alpha} - 1)} \sum_{\substack{i,j \in \alpha \\ i \neq j}} \langle \mathbf{S}_{i} \cdot \mathbf{S}_{j} \rangle,$

Gonzalez et al., PRL 122, 017201 (2019)

Effective model

Effective interactions

Seifert and Vojta, PRB 99, 155156 (2019)

S-dependence

Stuffed square lattice Motivation

- Is PD something more general?
- Which other systems can host PD?

Can we "tune" the disordered state?

Another partially disordered phase?

Stuffed square lattice

$\mathcal{H} = J \sum \mathbf{S}_i \cdot \mathbf{S}_j + J' \sum \mathbf{S}_i \cdot \mathbf{S}_j$ $\langle ij \rangle$ [ij] $J = \cos\left(\alpha \frac{\pi}{2}\right) \qquad J' = \sin\left(\alpha \frac{\pi}{2}\right)$

Another partially disordered phase?

Stuffed square lattice

$$\mathcal{H} = J \sum_{\langle a \rangle}$$

 S^{λ}

 $m_{\rm FE}^X$

$\sum_{\langle ij\rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J' \sum_{[ij]} \mathbf{S}_i \cdot \mathbf{S}_j$ $J = \cos\left(\alpha \frac{\pi}{2}\right) \qquad J' = \sin\left(\alpha \frac{\pi}{2}\right)$

Static Structure Factor

$$egin{aligned} & K(\mathbf{q}) = rac{1}{N_X} \sum_{i,j \in X} \left\langle \mathbf{S}_i \cdot \mathbf{S}_j \right\rangle \, e^{i \mathbf{q} \mathbf{r}_{ij}} \ & = \sqrt{rac{S_X(\mathbf{0})}{N_X}} & m_{\mathrm{AF}}^X = \sqrt{rac{S_X(\boldsymbol{\pi})}{N_X}} \end{aligned}$$

Numerical implementation

Itensor: Fishman et al., SciPost Phys. Codebases, 4 (2022)

Itensor libraries

- Ly up to 12 (16)
- CBC, $L_X > L_V/2$
- D = 3000(5000)
- t.e. < 10⁻⁶
- GS calculations
- Correlations

Known phases

α = 0.0 (J'=0)

C decoupled (π,π) Néel AB $m_{Fe}^A = m_{Fe}^B = m_{AF}^{AB}$

$\alpha = 1.0 (J=0)$

(120°) Néel ABC $m_{Fe}^A = m_{Fe}^B \neq m_{AF}^{AB}$

$J = \cos\left(\alpha \frac{\pi}{2}\right)$ $J' = \sin\left(\alpha \frac{\pi}{2}\right)$

(π,π) Néel ABC $m_{Fe}^C = m_{Fe}^{AB} = m_{AF}^{ABC}$

Known phases

$\alpha = 0.0 (J'=0)$

C decoupled (π,π) Néel AB $m_{Fe}^A = m_{Fe}^B = m_{AF}^{AB}$

α = 1.0 (J=0)

0

 $\alpha = 0.5 (J'=J)$

(120°) Néel ABC $m_{Fe}^A = m_{Fe}^B \neq m_{AF}^{AB}$

$J' = \sin\left(lpha \frac{\pi}{2}\right)$ $J = \cos\left(\alpha \frac{\pi}{2}\right)$

(π,π) Néel ABC $m_{Fe}^C = m_{Fe}^{AB} = m_{AF}^{ABC}$

Sublattice magnetizations

I) Partial Disorder? $m_{Fe}^{A} = m_{Fe}^{B} = m_{AF}^{AB}$

II) Ferrimagnet: $m_{Fe}^{A} = m_{Fe}^{B} \neq m_{AF}^{AB}$

III) (π , π) Néel ABC: $m_{Fe}^{C} = m_{Fe}^{AB} = m_{AF}^{ABC}$

$$m_{\mathrm{FE}}^X = \sqrt{\frac{S_X(\mathbf{0})}{N_X}} \qquad m_{\mathrm{AF}}^X = \sqrt{\frac{S_X(\boldsymbol{\pi})}{N_X}}$$

Magnetic structure factor

Peaks

- Néel order in AB sublattice
- Signal in the C sublattice
 Spiral π/2 or stripes <2>

$$<2> = 4444000$$

Magnetic structure factor

Peaks

- Néel order in AB sublattice
- Signal in the C sublattice
 Spiral π/2 or stripes <2>

$$<2> = 4444000$$

Finite size behaviour

- Néel AB peaks grow
- Stripes C peaks shrink

Real space correlations

Hand-wavy arguments for an C-spins effective model

1st and 2nd neighbours: xy-Ferro

Hand-wavy arguments for an C-spins effective model

1st and 2nd neighbours: xy-Ferro • 3rd and 4th neighbours: z-AF

<2> compatible

Reduced quantum fluctuations

- Large-S \rightarrow reduced fluctuations
- Mag field along z? (borders)
- It reduces fluctuations in AB
- C correlations are Fe in-plane (xy)

Conclusions

- Partial disorder at T=0
- Correlated C sites due to ZPQF
- Consistent with the effective model
- Tunable C correlations via AB

17

PD in isotropic Heisenberg antiferromagnets at T=0

Studied models

• Stuffed honeycomb lattice Gonzalez, FL, Blesio, Trumper, Gazza and Manuel, PRL 122, 017201 (2019)

• Stuffed square lattice Blesio, FL and Gonzalez, PRB 107, 134418 (2023)

Two-dimensional spin systems

Magnetic Frustration

Zero-point quantum fluctuations

Collective phenomena • Spin liquids Order by disorder Partial disorder

EXTRA: S^zmax and angle

Energy difference vs S^z sector

 $\alpha = 0$ C decoupled AB excitation

 $\alpha = 0.1 - 0.2$ C excitations $S^{2}=0$

 $\alpha = 0.3 - 0.6$ Ferrimagnet S² finite

 $\alpha = 0.8 - 1.0$ Néel order $S^{2}=0$

 $- \alpha = 0.0$ $- \alpha = 0.2$ $- \alpha = 0.4$ $- \alpha = 0.6$ $--\alpha = 0.1$ $--\alpha = 0.3$ $--\alpha = 0.5$ $--\alpha = 0.8$

Sublattice magnetizations

0.4

I) Partial Disorder? $m_{Fe}^{A} = m_{Fe}^{B} = m_{AF}^{AB}$	$\mathfrak{E}_{0.2}$
	0.0
II) Ferrimagnet:	0.4
$m_{Fe}^A = m_{Fe}^B \neq m_{AF}^{AB}$	$\mathfrak{E}_{0.2}$
III) (π , π) Néel ABC: $m_{Fe}^{C} = m_{Fe}^{AB} = m_{AF}^{ABC}$	$\begin{array}{c} 0.0 \\ 0.4 \end{array}$
$S_{\rm V}(0)$	$\mathfrak{E}_{0.2}$

 N_X

 $m_{\rm AF}^{\chi} =$

 N_X

 $m_{\rm FE}^X =$

0.0

Magnetic structure factor

- Néel order in AB sublattice
- Signal in the C sublattice
 Spiral π/2 or stripes <2>

$$<2> = 44449000$$

- Néel AB peaks grow
- Stripes C peaks shrink

Fig. 3.9: Cálculo de la energía dentro de cada subespacio S_z con DMRG. En el panel izquierdo, un singlete para la fase parcialmente desordenada $J' = 0.12 < J'_c$. En el panel derecho, un ferrimagneto para la fase con orden semiclásico $J^\prime=0.25>$ J'_c . "Almost Lx-indepa